Homework 10.1 Unit Circle

ANSWERS

Algebra 2A
10.1

Find the exact value of each function. Draw the picture!

2. $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$

3. $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
4. $\sin 30^{\circ}=\frac{1}{2}$

Find the given point $P(x, y)=P(\cos \theta, \sin \theta)$ given the quadrant. Draw the right triangle in the given quadrant with one leg on the x-axis.
5. 60° in quadrant IV
6. 30° in quadrant II

$$
\left(\frac{1}{2}, \frac{-\sqrt{3}}{2}\right)
$$

7. 45° in quadrant III

$\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$
If θ is an angle in standard position and if the given point P is located on the terminal side of θ and on the unit circle, find $\sin \theta$ and $\cos \theta$. Remember: $\boldsymbol{P}(\mathbf{x}, \mathrm{y})=\boldsymbol{P}(\cos \theta, \sin \theta)$ where $\cos \theta=\boldsymbol{x}$ and $\sin \theta=y$.
8. $P\left(-\frac{3}{7}, \frac{5}{7}\right)$
9. $P\left(-\frac{\sqrt{3}}{2}, \frac{-1}{2}\right)$

$$
\begin{aligned}
& \sin \theta=\frac{-\frac{1}{2}}{\cos \theta=-\frac{\sqrt{3}}{2}}
\end{aligned}
$$

11. $P\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$

$$
\begin{aligned}
& \sin \theta=\frac{-\frac{\sqrt{2}}{2}}{\sqrt{2}} \\
& \cos \theta=\frac{\sqrt{2}}{2}
\end{aligned}
$$

12. $P\left(-\frac{15}{17}, \frac{8}{17}\right)$

$$
\begin{aligned}
& \sin \theta=\frac{8}{17} \\
& \cos \theta=\frac{-15}{17}
\end{aligned}
$$

Algebra 2A
10.2

Name \qquad

Draw an angle with the given measure in standard position.

1. 210°

2. 580°

3. 135°

4. -560°

Rewrite each degree measure in radians and each radian measure in degrees.
$5.18^{\circ} \frac{\pi}{10}$
6. $870^{\circ} \frac{29 \pi}{6}$
7. $-72^{\circ} \frac{-2 \pi}{5}$
8. $-250^{\circ} \frac{-25 \pi}{18}$
9. $4 \pi \quad 720^{\circ}$
10. $\frac{13 \pi}{5} \quad 468^{\circ}$
11. $-\frac{9 \pi}{2}-810^{\circ}$
12. $-\frac{3 \pi}{8}-67.5^{\circ}$

Find one angle with positive measure and one angle with negative measure coterminal with each angle.
13. 65°

$$
\begin{array}{r}
425^{\circ} \\
-295^{\circ}
\end{array}
$$

15. 110°

$$
\begin{gathered}
470^{\circ} \\
-250^{\circ}
\end{gathered}
$$

17. $\frac{2 \pi}{5}$

$$
\begin{aligned}
& \frac{12 \pi}{5} \\
& -\frac{8 \pi}{5}
\end{aligned}
$$

18. $\frac{17 \pi}{6}$

$$
\begin{aligned}
& \frac{29 \pi}{6} \\
& \frac{-7 \pi}{6}
\end{aligned}
$$

19. $-\frac{3 \pi}{2}$

$$
\begin{aligned}
& \frac{\pi}{2} \\
& -\frac{7 \pi}{2}
\end{aligned}
$$

Algebra 2A
10.3

Name Key

Assignment

Find the exact values of the six trigonometric functions of θ if the terminal side of θ in standard position contains the given point.

1. $(6,8)$

$\sin \theta=\frac{4}{5}$
$\cos \theta=\frac{3}{5}$
$\tan \theta=\frac{4}{3}$
$\csc \theta=\frac{5}{4}$
$\sec \theta=\frac{5}{3}$
$\cot \theta=\frac{3}{4}$
2. $(-20,21)$

$\sin \theta=\frac{21}{29}$
$\cos \theta=\frac{-20}{29}$
$\tan \theta=-\frac{21}{20}$
$\boldsymbol{\operatorname { c s c }} \theta=\frac{29}{21}$
$\sec \theta=-\frac{29}{20}$
$\cot \theta=-\frac{20}{21}$
3. $(-2,-5)$
$\frac{-2 \mid}{-50_{6}^{2}}$
$\sin \theta=\frac{-5 \sqrt{29}}{29}$
$\cos \theta=\frac{-2 \sqrt{29}}{29}$
$\tan \theta=\frac{5}{2}$
$\csc \theta=-\frac{\sqrt{29}}{5}$
$\sec \theta=-\frac{\sqrt{29}}{2}$
$\cot \theta=\frac{2}{5}$

Find the reference angle for the angle with the given measure.
4. 236°
5. $\frac{13 \pi}{8}$
6. -210°
7. $-\frac{7 \pi}{4}$
56°
$\frac{3 \pi}{8}$
30°

$$
\frac{\pi}{4}
$$

USE THE UNIT CIRCLE!

Find the exact value of each trigonometric function.
8. $\tan 135^{\circ}$
-1
9. $\cot 210^{\circ}$
10. $\cot \left(-90^{\circ}\right)$
$\sqrt{3}$

11. $\tan \frac{5 \pi}{3}$
12. $\csc \left(-\frac{3 \pi}{4}\right)$
13. $\cot 2 \pi$
$-\sqrt{3}$
$-\sqrt{2}$
undefined

Suppose θ is an angle in standard position whose terminal side is in the given quadrant. For each function, find the exact values of the remaining five trigonometric functions of θ.
14. $\tan \theta=-\frac{12}{5}$, Quadrant IV $\int_{13}^{5} \int_{-12}^{2}$
14. $\sin \theta=\frac{2}{3}$, Quadrant III

$\cos \theta=-\frac{\sqrt{5}}{3}$
$\cos \theta=\frac{5}{13}$
$\csc \theta=-\frac{13}{12}$
$\sec \theta=\frac{13}{5}$
$\cot \theta=-\frac{5}{12}$
$\tan \theta=\frac{-2 \sqrt{5}}{5}$
$\csc \theta=\frac{3}{2}$
$\sec \theta=\frac{-3 \sqrt{5}}{5}$
$\cot \theta=-\frac{\sqrt{5}}{2}$

Algebra 2A
10.3B

Name

Review from 10.2
Find one positive and one negative angle coterminal with each given angle.

1) 1260°
positive: 900° negative: 180°
2) -720° positive: 360° negative: -360°
3) $\frac{9}{4} \pi \quad$ positive: $\frac{\frac{\gamma}{4}}{4}$ negative: $\frac{-\frac{7 \pi}{4}}{}$
4) Rewrite each degree measure in radians.

$$
\begin{aligned}
& 495^{\circ}=\frac{11 \pi}{4} \\
& -810^{\circ}=-\frac{9 \pi}{2}
\end{aligned}
$$

5) Rewrite each radian measure in degrees.
sa) $\quad-\frac{7 \pi}{2}=-630^{\circ}$
sb) $5 \pi=900^{\circ}$
sc) $\frac{15 \pi}{4}=675^{\circ}$
sd) $\frac{-9 \pi}{2}=-810^{\circ}$

Find the exact values of the following. Use the unit circle!

$$
\cos \frac{15 \pi}{2}=0
$$

$\cos 900^{\circ}=-1$

$\cos \frac{-13}{4} \pi=\underline{\frac{-\sqrt{2}}{2}}$
$\sin \frac{7}{2} \pi=-1$

$\sin -540^{\circ}=0$

$\tan 5 \pi=\underline{O}$

$\tan 405^{\circ}=1$

$\tan \frac{-\pi}{2}=$ undefined

$\tan 1080^{\circ}=0$

Algebra 2A
10.3C

Name \qquad
Assignment
Draw the given angle. Use reference angles and the unit circle to find the exact values of:

$$
\cos 30^{\circ}=\underline{\frac{\sqrt{3}}{2}} \quad \sin \frac{-\pi}{6}=\underline{-\frac{1}{2}} \quad \sin 510^{\circ}=\frac{\frac{1}{2}}{\tan -60^{\circ}=-\sqrt{3}}
$$

$$
\cos 120^{\circ}=-\frac{1}{2}
$$

$\sin 420^{\circ}=\frac{\sqrt{3}}{2}$

$$
\cos 390^{\circ}=\frac{\sqrt{3}}{2}
$$

$$
\tan 30^{\circ}=\frac{\sqrt{3}}{3}
$$

$$
\cos \frac{-8 \pi}{3}=-\frac{1}{2}
$$

$\sin 225^{\circ}=\frac{-\sqrt{2}}{2}$

$$
\cos 990^{\circ}=0
$$

$$
\sin 1080^{\circ}=O
$$

$\cos 1020^{\circ}=\frac{1}{2} \quad \tan 630^{\circ}=$ undefined

Algebra 2A
10.4

Name \qquad
Assignment

1. As Charles swims a 25 meter sprint, the position of his right hand relative to the water surface can be modeled by the graph below, where h is the height of the hand in inches from the water level and t is the seconds past the start of the sprint. What function describes this graph?
a. Sine or Cosine? \qquad Justify your answer. Crosses at $(0,0)$ and increases
b. What is the amplitude of the function? \qquad 8

2. What is the period of each function?

(a) 2π

(c) 6

(b) 4

(d) 2
