\qquad
Unit 10.1 Introduction
Date \qquad

Unit Circle

Learning	\bullet
Targets	\bullet

Special Right Triangles.

$$
30^{\circ}-60^{\circ}-90^{\circ} \text { Triangles: }
$$

$45^{\circ}-45^{\circ}-90^{\circ}$ Triangles:

Example 1: Find the exact value of x and y on the coordinate plane.

Example 2: Find the exact value of x and y on the coordinate plane.

Your Turn 1: Find the exact value of x and y on the coordinate plane.

Example 3:

Unit Circle Definitions

Definition of	If the terminal side of an angle θ in standard position intersects the unit circle at $P(x, y)$, then $\cos \theta=x$ and $\sin \theta=y$. Therefore, the coordinates of $P \operatorname{can}$ be written as $P(\cos \theta, \sin \theta)$.
Sine and Cosine	

Remember: $P(x, y)=P(\cos \theta, \sin \theta)_{\text {where }} \cos \theta=x$ and $\sin \theta=y$
Find all the coordinates of the unit circle. (Hint: One side of the triangle must be on the x-axis)

In your own words, what is the Big Idea of the lesson.

Big Idea:

\qquad
\qquad

Radian Measure: (optional) Divide pi into $1 / 12$'s to clarify how reduced fractions are derived.

ACTIVITY: (optional, you need glue, yarn, scissors)
Angle Measurement: An angle is determined by two rays. The degree measure of an angle is described by the amount and direction of rotation from the initial side along the positive x -axis to the terminal side.

Positive angle:

Negative angle:
\qquad degrees $=$ \qquad radians

We will construct a measure equal to 1 radian. Follow these instructions.

1. From the circle below, paper-fold to find the center point. Mark it as O for the origin.
2. Using a straight edge, draw a horizontal line through O.
3. Mark the horizontal segment at points of intersection with the circle as follows: on the left, E; on the right, A.
4. Measure a length of yarn from O to A. This represents the radius of the circle. Be as exact as possible.
5. Lay this piece of yarn on the arc of the circle, starting at point A and marking where the string ends on point B. Draw a segment from O to B. The angle $A O B$ measures 1 radian.
6. Cut another length of yarn from O to A. Lay it on the arc of the circle beginning at B, marking where the string ends with a C.
7. Cut another length of yarn from O to A. Lay it on the arc of the circle beginning at C, marking where the string ends with a D.
8. Your yarn should not "stretch" to meet the point E.

Answer these questions:

1. What is the circumference of the circle?
2. What is the circumference of half the circle?
3. How many radians are in the half circle?
4. How many radians are in a full circle?

$$
0
$$

This page intentionally left blank
\qquad
\qquad

Angles and Angle Measure

Learning Targets

Angle Measurement: An angle is determined by two rays. The degree measure of an angle is described by the amount and direction of rotation from the initial side along the positive x -axis to the terminal side.

Positive angle:

Negative angle:
\qquad degrees $=$ \qquad radians

Example 1: Rewrite each degree measure in radians and each radian measure in degrees.

$$
\text { degrees } \rightarrow \text { radians } \quad\left(\text { multiply by } \frac{\pi}{180^{\circ}}\right) \quad \text { radians } \rightarrow \text { degrees (multiply by } \frac{180^{\circ}}{\pi} \text {) }
$$

$$
90^{\circ}=
$$

$$
180^{\circ}=
$$

$$
-\frac{3 \pi}{2}=
$$

$$
360^{\circ}=
$$

$$
45^{\circ}=
$$

$$
60^{\circ}=
$$

$$
\frac{5 \pi}{3}=
$$

Your Turn 1: Rewrite each degree measure in radians and each radian measure in degrees.
a. 140°
b. -860°
c. $-\frac{3 \pi}{5}$
d. $\frac{11 \pi}{3}$

Example 2: Draw the following angles measures in standard notation.
a. 290°

b. $-\frac{7 \pi}{4}$

Your Turn 2: Draw the following angles measures in standard notation.
a. -50°

b. $\frac{5 \pi}{6}$

Coterminal Angles: Two angles in standard position that have the same terminal side. You can find a coterminal angle by adding or subtracting
\qquad degrees or \qquad radian.

Example 3: Find one positive and negative angle measure coterminal with each angle.
a. 690°
b. -130°
c. $\frac{3 \pi}{8}$

Your Turn 3: Find one positive and negative angle measure coterminal with each angle.
a. -75°
b. $\frac{-13 \pi}{6}$
c. $\frac{17 \pi}{5}$

In your own words, what is the Big Idea of the lesson.

Big Idea:

\qquad
\qquad
\qquad

Trigonometric Functions of General Angles

Learning Targets

Let θ be an angle in standard position and let $P(x, y)$ be a point on the terminal side of θ. By the Pythagorean Theorem, the distance r from the origin is given by $r=\sqrt{x^{2}+y^{2}}$. The trigonometric functions of an angle in standard position may be defined as follows.

Trigonometric Functions, θ in Standard Position

$$
\sin \theta=\frac{y}{r}
$$

$\cos \theta=\frac{x}{r}$
$\tan \theta=\frac{y}{x}$

$\csc \theta=\frac{r}{y}$
$\sec \theta=\frac{r}{x}$
$\cot \theta=\frac{x}{y}$

If θ is the measure of an acute angle of a right triangle, opp is the measure of the leg opposite θ, adj is the measure of the leg adjacent to θ, and hyp is the measure of the hypotenuse, then the following are true.

$$
\begin{array}{ll}
\sin \theta= & \csc \theta= \\
\cos \theta= & \sec \theta= \\
\tan \theta= & \cot \theta=
\end{array}
$$

Your Turn 1: Find the exact values of the six trigonometric functions of θ if the terminal side of θ contains the following points.
a. $(8,4)$

Reference Angles If θ is a nonquadrantal angle in standard position, its reference angle θ^{\prime} is defined as the acute angle formed by the terminal side of θ and the x-axis.

Reference Angle Rule	$\theta^{\prime}=\theta$	$\begin{gathered} \theta^{\prime}=180^{\circ}-\theta \\ \left(\theta^{\prime}=\pi-\theta\right) \end{gathered}$	$\begin{aligned} & \theta^{\prime}=\theta-180^{\circ} \\ & \left(\theta^{\prime}=\theta-\pi\right) \end{aligned}$	$\begin{aligned} & \theta^{\prime}=360^{\circ}-\theta \\ & \left(\theta^{\prime}=2 \pi-\theta\right) \end{aligned}$

Example 2: Sketch an angle of measure 205°

Your Turn 2: Sketch each angle. Then find its reference angle.
a. 315°
b. $-\frac{3 \pi}{4}$

Example 3: Use a reference angle to find the exact value of the following.
a. $\quad \cos \frac{3 \pi}{4}$
b. $\cot 30^{\circ}$
c. ${ }^{\csc \frac{11 \pi}{4}}$

Your Turn 3: Use a reference angle to find the exact value of the following.
a. $\tan \left(-510^{\circ}\right)$
e. $\sin \left(270^{\circ}\right)$
b. $\sin \left(-\frac{3 \pi}{4}\right)$
f. $\cos \left(180^{\circ}\right)$
c. $\tan (\pi)$
g. $\cot \left(90^{\circ}\right)$
d. $\tan \left(\frac{\pi}{2}\right)$
h. $\sec (2 \pi)$

Example 4:
Suppose θ is an angle in standard position whose terminal side is in the given quadrant. For each function, find the exact values of the remaining five trigonometric functions of $\boldsymbol{\theta}$.
$\sin \theta=\frac{4}{5}$, Quadrant II

Your Turn 4:

Suppose θ is an angle in standard position whose terminal side is in the given quadrant. For each function, find the exact values of the remaining five trigonometric functions of $\boldsymbol{\theta}$.
$\tan \theta=-\frac{12}{5}$, Quadrant IV

In your own words, what is the Big Idea of the lesson.
Big Idea: \qquad
\qquad
\qquad

Circular Functions

Learning
 Targets

Periodic Functions

Periodic
A function is called periodic if there is a number a such that $f(x)=f(x+a)$ for all x in the domain of
Functions the function. The least positive value of a for which $f(x)=f(x+a)$ is called the period of the function.

The sine and cosine functions are periodic; each has a period of 360° or 2π.

Example 1: Determine the period

Example 2 Determine the period of the function graphed below.

Example 3:

Determine the period of the function.

Example 4:

Example 5:

Your Turn 1:

Determine the period of each function.
19.

20.

21.

In your own words, what is the Big Idea of the lesson.
Big Idea: \qquad

Name: \qquad

Practice Test: Trigonometry Part Two

Find one positive and one negative angle coterminal with each given angle.

1) 1260° positive: \qquad negative: \qquad
2) -720°
positive: \qquad negative: \qquad
3) $\frac{9}{4} \pi \quad$ positive: \qquad negative: \qquad
4) Rewrite each degree measure in radians.

4a. $\quad 495^{\circ}=$
4b. $\quad 945^{\circ}=$

4c. $-810^{\circ}=$
4d. $-1620^{\circ}=$
5) Rewrite each radian measure in degrees.

5a. $-\frac{7 \pi}{2}=$
5b. $\quad 5 \pi=$
5. $\quad \frac{15 \pi}{4}=$

5d. $\frac{-9 \pi}{2}=$

Find the exact values of:
$6 \mathrm{M} . \sec \frac{-\pi}{6}=$
$6 \mathrm{~N} . \cot -540^{\circ}=$
WP. $\tan 1080^{\circ}=$

$6 \mathrm{Q} \cdot \sin 1080^{\circ}=$ \qquad
6 R. $\csc 1020^{\circ}=$ \qquad
GS. $\tan 630^{\circ}=$ \qquad

Find cosine $\&$ sine of the angle in standard position (on unit circle) given point $\mathbf{P}_{\text {on }}$ the terminal side of that angle.
7. $P\left(-\frac{4}{5},-\frac{3}{5}\right)$
8. $P\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ $\sin \theta=\ldots \cos \theta=$ \qquad
9. $P\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$\sin \theta=$ \qquad
\qquad
10. $P\left(-\frac{9}{41},-\frac{40}{41}\right)$

$$
\sin \theta=
$$

$\cos \theta=$ \qquad
11. Use the graph at the right.

a) What term is used the describe how high or low a graph changes? \qquad
b) What term is used to describe how long it takes for the function to repeat?
c) Find the period of the function: \qquad
d) Find the amplitude of the function: \qquad
12. Use the following two graphs to answer the questions.
(A)

Period: \qquad
Amplitude: \qquad
(B)

Period: \qquad
Amplitude: \qquad

Is graph (A) a sine function or cosine function? How do you know?

Is graph (B) a sine function or cosine function? How do you know?

