Algebra 2A Notes Unit 10.1 Introduction Name _____

Example 3: **Unit Circle Definitions**

Definition of Sine and Cosine	If the terminal side of an angle θ in standard position intersects the unit circle at $P(x, y)$, then $\cos \theta = x$ and $\sin \theta = y$. Therefore, the coordinates of <i>P</i> can be written as $P(\cos \theta, \sin \theta)$.	$P(\cos\theta,\sin\theta) \xrightarrow{(0,1)} y \xrightarrow{(1,0)} (1,0) \xrightarrow{(0,-1)} x$
----------------------------------	---	---

Remember: $P(x, y) = P(\cos \theta, \sin \theta)$ where $\cos \theta = x$ and $\sin \theta = y$ Find all the coordinates of the unit circle. (*Hint: One side of the triangle must be on the x-axis*)

ACTIVITY: (optional, you need glue, yarn, scissors)

Angle Measurement: An angle is determined by two rays. The degree measure of an angle is described by the **amount** and **direction** of rotation from the <u>initial side</u> along the positive x-axis to the <u>terminal side</u>.

We will construct a measure equal to 1 radian. Follow these instructions.

- 1. From the circle below, paper-fold to find the center point. Mark it as *O* for the origin.
- 2. Using a straight edge, draw a horizontal line through *O*.
- 3. Mark the horizontal segment at points of intersection with the circle as follows: on the left, *E*; on the right, *A*.
- 4. Measure a length of yarn from *O* to *A*. This represents the radius of the circle. Be as exact as possible.
- 5. Lay this piece of yarn on the arc of the circle, starting at point A and marking where the string ends on point *B*. Draw a segment from *O* to *B*. The angle *AOB* measures 1 radian.
- 6. Cut another length of yarn from O to A. Lay it on the arc of the circle beginning at B, marking where the string ends with a C.
- 7. Cut another length of yarn from O to A. Lay it on the arc of the circle beginning at C, marking where the string ends with a D.
- 8. Your yarn should not "stretch" to meet the point *E*.

Answer these questions:

- 1. What is the circumference of the circle?
- 2. What is the circumference of half the circle?
- 3. How many radians are in the half circle?
- 4. How many radians are in a full circle?

This page intentionally left blank

Alg 2A Trig Unit

Algebra 2A Notes

Name _____

Date

Trigonometric Functions of General Angles

If θ is the measure of an acute angle of a right triangle, *opp* is the measure of the leg opposite θ , *adj* is the measure of the leg adjacent to θ , and *hyp* is the measure of the hypotenuse, then the following are true.

Your Turn 1: Find the exact values of the six trigonometric functions of θ if the terminal side of θ contains the following points.

a. (8, 4)

Reference Angles If θ is a nonquadrantal angle in standard position, its reference angle θ' is defined as the acute angle formed by the terminal side of θ and the *x*-axis.

Ο

X

Name

Date ____

Circular Functions

Learning Targets	•
---------------------	---

Periodic Functions

Periodic A function is called **periodic** if there is a number *a* such that f(x) = f(x + a) for all *x* in the domain of the function. The least positive value of *a* for which f(x) = f(x + a) is called the period of the function.

The sine and cosine functions are periodic; each has a period of 360° or 2π .

Example 1: Determine the period

Determine the period of the function graphed below.

Example 3: Determine the period of the function.

Example 4:

Practice Test: Trigonometry Part Two

Find one positive and one negative angle coterminal with each given angle.1) 1260° positive:negative:2) -720° positive:negative:3) $\frac{9}{4}\pi$ positive:negative:4) Rewrite each degree measure in radians.4a.495° =

- 4b. $945^{\circ} =$
- 4c. $-810^{\circ} =$
- 4d. $-1620^{\circ} =$

5) Rewrite each radian measure in degrees.

- 5a. $-\frac{7\pi}{2} =$ 5b. $5\pi =$ 5c. $\frac{15\pi}{4} =$ -9π
- 5d. $\frac{-9\pi}{2} =$

Find the **<u>exact values</u>** of:

Find cosine & sine of the angle in standard position (on unit circle) given point P on the terminal side of that angle.

		\bigvee
Period:	Period:	
Amplitude:	Amplitude:	

-2

Is graph (A) a sine function or cosine function? How do you know?

1

 2π

Is graph (B) a **sine function** or **cosine function**? How do you know?