Final Exam Review

Hr. \qquad

Final Exam Information:

- The Final Exam consists of a Multiple-Choice Section and an Open-Response Section.
- You may not use notes of any kind on the Final Exam.
- This Exam Review is designed to help prepare you for the exam.
- In addition to successfully completing the exam review, you will need to study your notes.
- Being well-prepared for the exam is of utmost importance!
- All six parts of the Exam Review are required.

You will NOT be provided with these formulas on your exam.
Be sure to know the formulas below for your exam.
Slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Midpoint $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{2}+y_{1}}{2}\right)$
Distance $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Unit 1

For Questions 1-4, use the figure at the right.

1. What is another name for $\overleftrightarrow{R Q}$?
2. What is another name for line g ?
3. Name three noncollinear points.

4. Name three collinear points.

For Questions \#5-7, use the figure at the right.
5. Name three coplanar points.

6. Name the intersection of planes $R S P$ and $P T W$.
7. Name the segment that is parallel to $S W$
8. Use the number line to find the measure.
a) JL

b) $K N$
9. Suppose A, B, and C are collinear, B is between A and $C, A B=4 x, B C=5 x$, and $A C=36$.
a) Draw and label the figure.
b) Find x.
c) Find $B C$.
10. Suppose S is the midpoint of $R T, R S=4 x-5$, and $S T=11+2 x$.
a) Draw and label the figure.
b) Find x.
c) Find $S T$.
11. Suppose Q is the midpoint of $\overline{P R}, Q R=6-3 x$, and $P R=14 x+2$.
a) Draw and label a figure that satisfies the given information.
b) Find x.
c) Find $P R$.
12. Find the length of $\overline{P Q}$.

13. Find the distance between $Z(-1,3)$ and $M(8,-7)$.
14. Find the coordinates of the midpoint of a segment having endpoints $A(0,0)$ and $D(-2,-8)$.
15. Find the coordinates of the midpoint of a segment having endpoints $R(-10,5)$ and $S(8,4)$.

For Questions 16-18, find \boldsymbol{x} and the measures of each numbered angle.
16. . $m \angle 2=4 x-26$, $m \angle 3=3 x+4$
17. $m \angle 4=2 x-5$
$m \angle 5=4 x-13$

18. $m \angle 1=x+10$ $m \angle 2=3 x+18$

For Questions 19-21, draw and label a figure. Then, write an equation to answer the question.
19. If $\overrightarrow{G K}$ bisects $\angle F G H, m \angle F G K=(3 v-4)^{\circ}$, and $m \angle K G H=(2 v+7)^{\circ}$, find $m \angle F G K$.
20. Suppose $\angle R S T$ is a right angle and point U is in the interior of $\angle R S T$. If $m \angle R S U=3(w-4)^{\circ}$ and $m \angle U S T=(6 w+3)^{\circ}$, find w.
21. If $\overrightarrow{B D}$ is in the interior of $\angle A B C, m \angle A B C=55^{\circ}, \mathrm{m} \angle A B D=(7 x-2)^{\circ}$, and $m \angle D B C=(3 x+7)^{\circ}$, find $m \angle A B D$.

Unit 2

Review the properties, definitions theorems, and postulates listed below.

reflexive property	subtraction property	distributive property
symmetric property	multiplication property	midpoint theorem
transitive property	division property	definition of a midpoint addition property
substitution property definition of an angle bisector segment addition postulate angle addition postulate	complement theorem	
supplement theorem	vertical angles theorem	

For \#22-27, state the property, definition, theorem, or postulate that justifies each statement.
22. $Q A=Q A$.
23. If $A B=R S$ and $R S=W Y$, then $A B=W Y$.
24. If $A B=R S$, then $A B+5=R S+5$. \qquad
25. If $80^{\circ}=m \angle A$, then $m \angle A=80^{\circ}$. \qquad
26. If E is the midpoint of $\overline{X Y}$, then $\overline{X E} \cong \overline{E Y}$. \qquad
27. If $\overrightarrow{B C}$ bisects $m \angle A B D$, the $\angle A B C \cong \angle C B D$.

Complete each proofs.

28. Given: $3 \mathrm{x}+8=17$

Prove: $x=3$

Statements	Reasons
$1 . \quad 3 \mathrm{x}+8=17$	1.
2.$\mathrm{x} x+8=17$ -8 -8	2.
$3.3 x=9$	3.
4. $\frac{3 x}{3}=\frac{9}{3}$	4.
5. $x=3$	5.

29. Given: $5 \mathrm{x}-2=3 \mathrm{x}+6$

Prove: $x=4$

Statements	Reasons
1.	1.
$2.5 \mathrm{x}-2=3 \mathrm{x}+6$ $-3 x-3 x$	2.
$3.2 \mathrm{x}-2=6$	3. Substitution Property
4.	4. Addition Property

5.	5. Substitution Property
$6 . \frac{2 x}{2}=\frac{8}{2}$	6.
7.	7. Substitution Property

Unit 3

30. Use the figure at the right.
a) Identify a pair of vertical angles.
b) Identify a pair of corresponding angles.
c) Identify a pair of alternate interior angles.
d) Identify a pair of alternate exterior angles.

e) Identify a pair of consecutive interior angles.
f) Identify a pair of supplementary angles.
g) Identify a linear pair.

For Questions 31 and 32, use the figure at the right.
31. Identify the plane parallel to plane $V W T$.
32. Name a segment that intersects with $\overline{Q P}$

For 33 and 34, use the figure at the right.
33. Which of the following could prove $j / / k$?
A. $\angle 1 \cong \angle 5$
B. $\angle 2 \cong \angle 4$
C. $\angle 4 \cong \angle 10$
D. $\angle 3 \cong \angle 10$
34. Which of the following could prove $g / / h$?
A. $\angle 9 \cong \angle 10$
B. $\angle 1 \cong \angle 5$
C. $\angle 4 \cong \angle 10$
D. $\angle 3 \cong \angle 6$

For 35-38, suppose $\overline{A B}$ has a slope $=\frac{2}{5}, \overline{C D}$ has a slope $=\frac{5}{2}, \overline{E F}$ has a slope $=-\frac{5}{2}$, $\overline{G H}$ has a slope $=2.5$, and $\overline{J K}$ has a slope $=-\frac{2}{5}$.
35. Name two lines that are parallel.
36. Name two lines that are perpendicular.
37. Name two lines that are neither parallel nor perpendicular.
38. Determine if $A B$ and $E F$ are parallel, perpendicular or neither: $A(1,3), B(3,6), E(1,5)$ and $F(-5,9)$

Unit 4

For Questions 39 and 40 draw and label a figure. Then, write an equation to answer the question.

39. Find a and the measure of each side of equilateral triangle $M N O$ if $M N=5 a, N O=4 a+6$, and $M O=7 a-12$.
40. Triangle $T A C$ is an isosceles triangle with vertex angle A. If $T A=3 b+1, A C=4 b-11$, and $T C=6 b-2$, find $b, T A, A C$, and $T C$.
41. Using the figure below, find the measures of the numbered angles.

42. Name the postulate that could prove the two triangles are congruent ($\boldsymbol{S S S}, \boldsymbol{S A S}, \boldsymbol{A} \boldsymbol{S} \boldsymbol{A}, \boldsymbol{A} \boldsymbol{A} \boldsymbol{S}$). If there is not enough information, write Not Possible.
a)

b)

c)

d)

43. Identify the congruent triangles in the figure at the below right.

Be sure to name the corresponding vertices in the correct order!
$\Delta A B C \cong \Delta$ \qquad

For Questions 44-46, write a two-column proof.

44. Given: W is the midpoint of $\overline{X Y}$ W is the midpoint of $\overline{V Z}$

Prove: $\triangle X V W \cong \triangle Y Z W$

45. Given: $\overrightarrow{B D}$ bisects $\angle A B C$
$\angle A D B \cong \angle C D B$
Prove: $\angle 1 \cong \angle 2$

46. Given: $\triangle A B C$ is isosceles with base $\overline{A C}$ $\angle A E B \cong \angle C F B$

Prove: $\triangle A B E \cong \triangle C B F$

$\text { 4. } \angle A \approx \angle C$	4. Reasons
$\begin{aligned} & \text { 5. } \triangle A B E=\triangle C B F \\ & \triangle \mathrm{is} \\ & \text { isosceles } \end{aligned}$	5 :
with base $A C$	
2. $\angle A E B \cong \angle C F B$	2.
3. $\overline{A B} \cong \overline{C B}$	3.

Unit 5

47. $r_{d}(\Delta G H J)$

48. Perform the necessary reflections to translate $\triangle \mathrm{ABC}$.

49. You are given figure $\Delta C A T$ and reflection line m. Draw $r_{n} \circ r_{m}$ (QUAD) by adding a second reflection line, n and performing the necessary reflections so that the magnitude of the rotation is 80°.

50. Suppose $\Delta \boldsymbol{J} \boldsymbol{K} \boldsymbol{N}$ has vertices $J(4,-2), K(-1,-3)$, and $M(-2,5)$. Draw $\mathrm{R}_{90^{\circ}}(\Delta J K M)$ and state the coordinates of J'K'M'.

\qquad
51. Suppose $\triangle D E F$ has vertices $D(-3,-4), E(0,2)$, and $F(4,-5)$ when $(x, y)->(x+1, y+4)$. Draw $\triangle D E F$ and its image under. $T_{(1,4)}$. Then state the coordinates of $D^{\prime} E^{\prime} F^{\prime}$.

Unit 6

54. In parallelogram $D E F G, m \angle F G E=4 x+1$ and $m \angle D E G=6 x-15$. Find $m \angle F G E$.

For \#55-56, find the values of x and y so that each figure is a parall G

55.

56.

57. In rhombus $D K L M, M L=40, M K=64$, and $L A=24$ and $m \angle M D A=52^{\circ}$.

a. $A M=$
b. $K L=$ \qquad g. $K A=$ \qquad
c. $D L=$ \qquad h. $D K=$ \qquad
d. $A D=$ \qquad i. $m \angle D M A=$ \qquad
e. $m \angle D K A=$ \qquad j. $m \angle D K L=$ \qquad

For \#58-61, determine whether each quadrilateral is a parallelogram based on the given information. Justify your answer.
58. Is there enough information to state that the figure at the left is a parallelogram? \qquad

Justification \qquad
59. Is there enough information to state that the figure at the left is a parallelogram? \qquad

Justification \qquad
60. Is there enough information to state that the figure at the left is a parallelogram? \qquad

Justification \qquad
61. Is there enough information to state that the figure at the left is a parallelogram? \qquad

Justification \qquad
62. For trapezoid $E F G H, J$ and K are the midpoints of the legs. Find $J K$. Show all calculations.

63. For trapezoid $E F G H, J$ and K are the midpoints of the legs. Find $H G$. Show all calculations.

For \#64-65, determine whether the quadrilateral with the given vertices is a parallelogram, rectangle, rhombus, or square. List all that apply and justify your answer. Show all calculations.
64. $B(0,3), E(6,-2), F(1,-8), G(-5,-3)$

What type of figure(s) is BEFG?
65. $R(-2,5), S(1,3), M(-3,-4), Y(-6,-2)$

What type of figure(s) is BEFG?

