esson 9.1: Right Triangle Trigonometry

carning Targets:

(0) can find values of the six trigonometric functions (sine, cosine, tangent, cosecant, secant, and cotangent) for acute angles.
(C) I can solve equations involving inverse trigonometric functions.
(C) I can solve problems involving right triangles.

$\sin \theta=$
$\cos \theta=$
$\sec \theta=$
$\tan \theta=$
$\cot \theta=$

Example 1:

$$
\sin G=\quad \csc G=
$$

$\cos G=\quad \sec G=$
$\tan G=$
$\cot G=$

Example 2:

$\sin A=$
$\cos A=$
$\tan A=$
$\cot A=$

Example 3: Multiple-Choice Test Item

If $\tan A=\frac{5}{3}$, find the value of $\csc A$.
A. $\frac{3}{5}$
B. $\frac{4}{3}$
C. $\sqrt{34}$
D. $\frac{\sqrt{34}}{5}$

Example 4: Multiple-Choice Test Item

If $\sin B=\frac{2}{3}$, find the value of $\cos B$.
A. $\frac{\sqrt{5}}{2}$
B. $\frac{3}{5}$
C. $\frac{\sqrt{5}}{3}$
D. $\frac{5}{3}$

Example 5: Solve $\triangle X Y Z$. Round measures of sides to the nearest tenth and measures of angles to the nearest degree.

Example 6: Solve $\triangle X Y Z$. Round measures of sides to the nearest tenth and measures of angles to the nearest degree.

Example 7: Solve $\triangle A B C$. Round measures of sides to the nearest tenth and measures of angles to the nearest degree.

Example 8: Solve $\triangle A B C$. Round measures of sides to the nearest tenth and measures of angles to the nearest degree.

Example 9:

Bridge Construction: In order to construct a bridge across a river, the width of the river must be determined. A stake is planted on one side of the river directly across from a second stake on the opposite side. At a distance 30 meters to the left of the stake, an angle of 55° is measured between the two stakes.
Find the width of the river.

Example 10:

Skiing: A run has an angle of elevation of 15.7° and a vertical drop of 1800 feet. Estimate the length of this run.

Lesson 9.2: The Law of Sines

Learning Target:

(C) I can solve problems by using the Law of Sines.

The Law of Sines

In ANY triangle $\triangle A B C$,

When to Use the Law of Sines:

The Law of Sines is especially useful when solving triangles given \qquad , or \qquad .

Example 1: \quad Find b.

Example 2: \quad In $\triangle D E F$, find $m \angle D$.

Example 3: When the sun's angle of elevation is 76°, a tree tilted at an angle of 4° from the vertical casts an 18 -foot shadow. Find the height of the tree, to the nearest tenth of a foot.

Example 4: A ranger tower at point A is 42 kilometers north of a ranger tower at point B. A fire at point C is observed from both towers. If $\angle B A C$ measures 43° and $\angle A B C$ measures 68°, which ranger tower is closer to the fire?

Lesson 9.3: The Law of Cosines

Learning Targets:

(C) I can solve problems by using the Law of Cosines.
(C) I can determine whether a triangle can be solved by first using the Law of Sines or the Law of Cosines.

The Law of Cosines

In ANY triangle $\triangle A B C$,
\qquad

When to Use the Law of Cosines:

The Law of Cosines is especially useful when solving triangles given \qquad or \qquad .

Using the Law of Cosines to Find the Missing Side

Example 1: In $\triangle A B C$, find c.

Example 2: In $\triangle R S T$, find r.

Example 3: A ranger tower at point A is directly north of a ranger tower at point B. A fire at point C is observed from both towers. The distance from the fire to tower A is 60 miles, and the distance from the fire to tower B is 50 miles. If $m \angle A C B=62^{\circ}$, find the distance between the towers.

Using the Law of Cosines to Find a Missing Angle

Example 4: In $\triangle D E F$, find $m \angle D$.

Example 5: In $\triangle J K L$, find $m \angle L$.

