Unit 11: Surface Area and Volume

11.1 Three Dimensional Figures and Cross Sections

Example 2:

Name the bases, faces, edges, and vertices of the solid at the right.

Base(s): \qquad

Faces: \qquad

Edges: \qquad
Vertices: \qquad

	Term/Concept	Definition/Example	Picture
	Cylinder	A cylinder is a solid with congruent \qquad \qquad that are \qquad .	
	Cone	- A cone has a \qquad \qquad and a \qquad	
	Sphere	A sphere is the set of all points in space that are at a given distance from a given point.	

	Term/Concept	Definition/Example	Picture
	Cross Section	- A cross section of a solid is the intersection of the solid with a \qquad	
	Example 3: Identify the shape of the cross section of each solid pictured below. a. b.		

苞	- I can draw - I can find s	o-dimensio ace area us	mod g net	ls for three-dim			
	Term/Concept	Definition/Example			Picture		
	Net	A net is a solid.	_-d (1) (2) (3) (4)	ensional \qquad ©			
	Surface Area	- The surface area of a solid is the sum of the \qquad of each face of the solid.			(5)	(1) (2) (3) (4)	©
	Example 1: Draw a line from each net to the solid it creates.						

11.3 Volumes of Prisms and Cylinders

Example 3:
Find the volume of the prism.
Your turn: Find the volume of the prism. Example 5: A prism has a base area of $42 \mathrm{~cm}^{2}$ and a volume of $735 \mathrm{~cm}^{3}$. What is the height of the prism? Your turn: A square prism has a volume of 196 in ${ }^{3}$. If the height is 16 in, what are the dimensions of the base?

11.4 Volumes of Pyramids and Cones

	- I can find the volume of pyramids. - I can find the volume of cones.		
	Term/Concept	Definition/Example	Picture
	Slant Height of a cone	The slant height ℓ of a cone is the length of any \qquad joining the \qquad to the edge of the circular \qquad	
	Slant Height of a pyramid	The slant height of a regular pyramid is the \qquad of each \qquad (triangular face).	
	Height	The height of a cone or pyramid is the length of the \qquad that has the \qquad as one endpoint and is \qquad to the \qquad .	
	Volume of pyramids		
	Volume of cones		

| Your turn:
 Find the volume of the pyramid. | Your turn:
 Find the volume of the pyramid. |
| :--- | :--- | :--- |
| Example 5:
 A cone has a volume of $96 \pi \mathrm{~m}^{3}$ and a height of
 $8 \mathrm{~m} . ~ F i n d ~ t h e ~ r a d i u s ~ o f ~ t h e ~ b a s e . ~$ | Your turn:
 A cone has a volume of $2500 \pi \mathrm{~cm}^{3}$ and a radius
 of $5 \mathrm{~cm} . ~ F i n d ~ t h e ~ h e i g h t ~ o f ~ t h e ~ c o n e . ~$ |

11.5 Surface Area and Volumes of Spheres

Example 2:			
Find the volume of the hemisphere.	Your turn: Find the volume of a hemisphere with a radius of 10 in.		
Example 3: A sphere has a circumference of 58 m.			
the surface area of the sphere?		\quad	Your turn:
:---			
Find the volume of the sphere.			

11.6 Volumes of Composite Figures

Example 1: Find the volume of the figure below.

11.7 Volumes and Surface Areas of Similar Figures

	- I can identify properties of similar solids. - I can find the volume and surface area of similar solids.
	Term/Concept \quad Definition/Example ${ }^{\text {Picture }}$
	Similar SolidsSimilar solids are solids that have the same , but not necessarily the same _—_
	If 2 solids are similar with a scale factor of a:b, then • Scale Factor of Similar Solids • \quad the surface areas have a ratio of • the volumes have a ratio of.
	Example 1: Determine whether each pair of solids is congruent, similar or neither. a. b.
	Your turn: Determine whether each pair of solids is congruent, similar or neither. a. b.

Example 3:
Find the scale factor for each pair of similar figures. Then find the ratio of their surface areas and the
ratio of their volumes.
Ratio of Vol.:
Example 4: Factor:
The two prisms are similar.
a. If the height of the smaller prism is 10 m , find the height of the larger prism.
b. If the surface area of the smaller prism is $280 \mathrm{~m}^{2}$, find the surface area of the larger prism.
c. If the volume of the smaller prism is $400 \mathrm{~m}^{3}$, find the volume of the larger prism.

Your turn:

Two cylinders are similar. One has a height of 8 cm and the other has a height of 6 cm .

a. If the radius of the larger cylinder is 11 cm , find the radius of the smaller cylinder.
b. If the surface area of the smaller cylinder is $325 \mathrm{~cm}^{2}$, find the surface area of the larger cylinder.
c. If the volume of the larger cylinder is $1345 \mathrm{~cm}^{3}$, find the volume of the smaller cylinder.

Geometry B Unit 11

