\qquad
Date: \qquad

$$
\begin{gathered}
\text { Learping Targetf: } \\
\text { Unit 11: Rationals (allgebraic) }
\end{gathered}
$$

Lesson
11.1 Multiplying and Dividing Rational Expressions

- I can simplify rational expressions.
- I can simplify complex fractions.
11.2 Adding and Subtracting Rational Expressions Learning Targets:
- I can add and subtract rational expressions.

Practice Quiz 11.1-11.2

- I can simplify rational expressions.
- I can simplify complex fractions.
- I can add and subtract rational expressions.
11.3 Solving Rational Equations

Learning Targets:

- I can solve rational equations.
Unit 11 Review

Study for the test!

Assignment	
Worksheet 11.1	
Worksheet 11.2	
Practice Quiz 11.1-11.2	
Worksheet 11.3	
Review Worksheet	
Practice Test	

Multiplying and Dividing Rational Expressions

	I I can simplify rational expressions. I can simplify complex fractions
V 0 c a b u u l a r y	Rational Expression: It's the ratio of two polynomial expressions Examples: Complex Fraction: It's a rational expression whose numerator and/or denominator contains a rational expression. Examples: Multiplying Rational Expressions: $\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \text {, if } b \neq 0 \text { and } d \neq 0$ Dividing Rational Expressions: $\frac{a}{b} \div \frac{c}{d}=\frac{a d}{b c}, \text { if } b \neq 0, c \neq 0, \text { and } d \neq 0$ Review: How to multiply and divide monomials: How to multiply, divide and find the power of a power: How to factor polynomials:

Simplify each expression:

1. $\frac{\left(-2 a b^{2}\right)^{3}}{20 a b^{4}}$
2. $\frac{\frac{a^{2} b c^{3}}{x^{2} y^{2}}}{\frac{a b^{2}}{c^{4} x^{2} y}}$
3. $\frac{3 m^{3}-3 m}{6 m^{4}} \cdot \frac{4 m^{5}}{m+1}$
4. $\frac{\frac{a^{2}-16}{a+2}}{\frac{a^{2}+3 a-4}{a^{2}+a-2}}$
5. $\frac{x-3}{a+b} \cdot \frac{a^{2}-b^{2}}{3-x}$
6. $\frac{16 p^{2}-8 p+1}{14 p^{4}} \div \frac{4 p^{2}+7 p-2}{7 p^{5}}$

Closure: lesson 12.1

1. a. In order to simplify a rational number or rational expression, \qquad the numerator and \qquad and divide both of them by their
\qquad .
b. A rational expression is undefined when its \qquad is equal to \qquad -
To find the values that make the expression undefined, completely \qquad the original \qquad and set each factor equal to \qquad .
2. a. To multiply two rational expressions, \qquad the \qquad and multiply the denominators.
b. To divide two rational expressions, \qquad by the \qquad of the \qquad .
3. a. Which of the following expressions are complex fractions?
i. $\frac{7}{12}$
ii. $\frac{\frac{3}{8}}{\frac{5}{16}}$
iii. $\frac{r+5}{r-5}$
iv. $\frac{\frac{z+1}{z}}{z}$
v. $\frac{\frac{r^{2}-25}{9}}{\frac{r+5}{3}}$
b. Does a complex fraction express a multiplication or division problem?

How is multiplication used in simplifying a complex fraction?

Warm Up (lesson 12.1) Simplify each expression.

1. $\frac{24 r s^{2}}{-8 s}$
2. $\frac{3 b^{2}-7 b+2}{b^{2}+3 b-10}$
3. For what value(s) of x is the expression undefined?
$\frac{8 x}{(4-x)\left(x^{2}-1\right)}$

Name: \qquad
\qquad

Adding and Subtracting Rational Expressions

8 1 \vdots \vdots \vdots \vdots \vdots	I can determine the LCM of polynomials I can add and subtract rational expressions
$\begin{aligned} & \mathrm{V} \\ & \mathrm{o} \\ & \mathrm{C} \\ & \mathbf{a} \\ & \mathrm{~b} \end{aligned}$	To add and subtract Rational Expressions: Step 1 If necessary, find equivalent fractions that have the same denominator. Step 2 Add or subtract the numerators. Step 3 Combine any like terms in the numerator. Step 4 Factor if possible. Step 5 Simplify if possible.
$\begin{aligned} & \mathbf{a} \\ & \mathbf{r} \\ & \mathbf{y} \end{aligned}$	To find equivalent fractions with the same denominator, we need the LCM. LCM of Polynomials To find the least common multiple of two or more polynomials, factor each expression. The LCM contains each factor the greatest number of times it appears as a factor. Example 1 Find the LCM of $16 p^{2} q^{3} r$, $40 p q^{4} r^{2}$, and $15 p^{3} r^{4}$. Example 2 Find the LCM of $3 m^{2}-3 m-6 \text { and } 4 m^{2}+12 m-40$

Closure: Lesson 12.2

1. a. In work with rational expressions, LCD stands for \qquad and LCM stands for \qquad . The LCD is the \qquad of the denominators.
b. To find the LCM of two or more numbers or polynomials, \qquad each number or \qquad . The LCM contains each \qquad the
\qquad number of times it appears as a \qquad .
2. To add $\frac{x^{2}-3}{x^{2}-5 x+6}$ and $\frac{x-4}{x^{3}-4 x^{2}+4 x}$, you should first factor the \qquad of each fraction. Then use the factorizations to find the \qquad of $x^{2}-5 x+6$ and $x^{3}-4 x^{2}+4 x$. This is the \qquad for the two fractions.
3. When you add or subtract fractions, you often need to rewrite the fractions as equivalent fractions. You do this so that the resulting equivalent fractions will each have a denominator equal to the \qquad of the original fractions.
4. To add or subtract two fractions that have the same denominator, you add or subtract their \qquad and keep the same \qquad .
5. The sum or difference of two rational expressions should be written as a polynomial or as a fraction in \qquad $-$

Warm-up (lesson 12.2)

1. Find the LCM of $13 x y^{3}$ and $20 x^{2} y^{2} z$.
2. Simplify: $\frac{3}{m n}+\frac{4}{5 m}=$
3. Simplify: $\frac{x+5}{2 x-12}-\frac{x+2}{3 x-18}=$
\qquad

Solving Rational Equations

$\begin{array}{\|c\|} \hline \mathbf{O} \\ b \\ j \\ e \\ e \\ c \\ t \\ i \\ i \\ \mathbf{v} \\ \hline \end{array}$	I can solve Rational Equations
V o c a b u u 1 a r y	A rational equation is \qquad Hint: When solving a rational equation, eliminate the fractions first! Check the solutions in the original equation
	Example Solve $\frac{9}{10}+\frac{2}{x+1}=\frac{2}{5}$.

19. $\frac{1}{n+3}+\frac{5}{n^{2}-9}=\frac{2}{n-3}$

\#19 Restriction:

21. $\frac{x-8}{2 x+2}+\frac{x}{2 x+2}=\frac{2 x-3}{x+1}$
\#21 Restriction: \qquad
22. $\frac{12 s+19}{s^{2}+7 s+12}-\frac{3}{s+3}=\frac{5}{s+4}$
\#22 Restriction:
