Name:	
	Date:

Learning Targets:

Unit II: Rationals (Algebraic)

Lesson	Assignment /
11.1 Multiplying and Dividing Rational Express	sions
Learning Targets:	Worksheet 11.1
 I can simplify rational expressions. 	
 I can simplify complex fractions. 	
11.2 Adding and Subtracting Rational Express	ions
Learning Targets:	Worksheet 11.2
I can add and subtract rational expressions.	
Practice Quiz 11.1-11.2	
 I can simplify rational expressions. 	Practice Quiz 11.1-11.2
I can simplify complex fractions.	
 I can add and subtract rational expressions. 	
11.3 Solving Rational Equations	
Learning Targets:	Worksheet 11.3
I can solve rational equations.	
Unit 11 Review	Review Worksheet
Study for the test!	Practice Test
	Need Extra
	Help? Seminar:
	Tuesday and Thursday

Multiplying and Dividing Rational Expressions

Objective

Vocabulary

- ☐ I can simplify rational expressions.
- \square I can simplify complex fractions .
 - Rational Expression: It's the ratio of two polynomial expressions Examples:
 - Complex Fraction: It's a rational expression whose numerator and/or denominator contains a rational expression.

Examples:

Multiplying Rational Expressions:

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$
, if $b \neq 0$ and $d \neq 0$

Dividing Rational Expressions:

$$\frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$$
, if $b \neq 0$, $c \neq 0$, and $d \neq 0$

Review:

How to multiply and divide monomials:

How to multiply, divide and find the power of a power:

How to factor polynomials:

Summary of Factoring Techniques

- For all polynomials, first factor out the greatest common factor (GCF).
- For a **binomial**, check to see if it is any of the following:

 - a. difference of squares: $x^2 y^2 = (x + y)(x y)$ b. difference of cubes: $x^3 y^3 = (x y)(x^2 + xy + y^2)$ c. sum of cubes: $x^3 + y^3 = (x + y)(x^2 xy + y^2)$
- For a **trinomial**, use the X

$$ax^2 + bx + c$$
:

(c)
$$x^2 + 2xy + y^2 = (x + y)^2$$

 $x^2 - 2xy + y^2 = (x - y)^2$ square trinomials
Example 1: Simplify.

a.
$$\frac{24a^5b^2}{(2ab)^4}$$

b.
$$\frac{3r^2s^3}{5t^4} \cdot \frac{20t^2}{9r^3s}$$

c. $\frac{x^2 + 8x + 16}{2x - 2} \div \frac{x^2 + 2x - 8}{x - 1}$

$$\frac{3x-1}{x}$$
d.
$$\frac{3x^2+8x-3}{x^4}$$

YOU

2.
$$\frac{\frac{a^2bc^3}{x^2y^2}}{\frac{ab^2}{c^4x^2y}}$$

4.
$$\frac{3m^3 - 3m}{6m^4} \cdot \frac{4m^5}{m+1}$$

$$6. \frac{\frac{a^2 - 16}{a + 2}}{\frac{a^2 + 3a - 4}{a^2 + a - 2}}$$

4

7.
$$\frac{x-3}{a+b} \cdot \frac{a^2-b^2}{3-x}$$

8.
$$\frac{16p^2 - 8p + 1}{14p^4} \div \frac{4p^2 + 7p - 2}{7p^5}$$

Closure: lesson 12.1

- 1. a. In order to simplify a rational number or rational expression, ______ the numerator and _____ and divide both of them by their
 - b. A rational expression is undefined when its ______ is equal to ______.

 To find the values that make the expression undefined, completely ______ the original ______ and set each factor equal to ______.
- **2. a.** To multiply two rational expressions, _____ the ____ and multiply the denominators.
 - **b.** To divide two rational expressions, ______ by the _____ of the _____
- **3. a.** Which of the following expressions are complex fractions?
 - i. $\frac{7}{12}$ ii. $\frac{\frac{3}{8}}{\frac{5}{16}}$ iii. $\frac{r+5}{r-5}$ iv. $\frac{\frac{z+1}{z}}{z}$ v. $\frac{\frac{r^2-25}{9}}{\frac{r+5}{3}}$
 - **b.** Does a complex fraction express a multiplication or division problem? How is multiplication used in simplifying a complex fraction?

Warm Up (lesson 12.1) Simplify each expression.

$$1. \ \frac{24rs^2}{-8s}$$

$$3. \ \frac{3b^2 - 7b + 2}{b^2 + 3b - 10}$$

6. For what value(s) of x is the expression undefined?

$$\frac{8x}{(4-x)(x^2-1)}$$

Name:	
	Date:

Adding and Subtracting Rational Expressions

Ob-100+->0

- ☐ I can determine the LCM of polynomials
- \square I can add and subtract rational expressions

To add and subtract Rational Expressions:

- **Step 1** If necessary, find equivalent fractions that have the same denominator.
- **Step 2** Add or subtract the numerators.
- **Step 3** Combine any like terms in the numerator.
- Step 4 Factor if possible.
- Step 5 Simplify if possible.

To find equivalent fractions with the same denominator, we need the LCM.

LCM of Polynomials To find the least common multiple of two or more polynomials, factor each expression. The LCM contains each factor the greatest number of times it appears as a factor.

Find the LCM of $16p^2q^3r$, $40pq^4r^2$, and $15p^3r^4$.

Example 2 Find the LCM of $3m^2 - 3m - 6$ and $4m^2 + 12m - 40$.

-nstruction

Example Simplify $\frac{6}{2x^2 + 2x - 12} - \frac{2}{x^2 - 4}$.

Your Turn:

1.
$$\frac{-7xy}{3x} + \frac{4y^2}{2y}$$

2.
$$\frac{2}{x-3} - \frac{1}{x-1}$$

3.	4a		15b
	3bc	_	5ac

Your Tur

$$4. \ \frac{3}{x+2} + \frac{4x+5}{3x+6}$$

$$5. \frac{3x+3}{x^2+2x+1} + \frac{x-1}{x^2-1}$$

$$6. \ \frac{4}{4x^2 - 4x + 1} - \frac{5x}{20x^2 - 5}$$

Closure: Lesson 12.2

1. a. In work with rational expressions, LCD stands for					
and LCM stands for	The LCD is the				

- b. To find the LCM of two or more numbers or polynomials, _____ each number or _____. The LCM contains each _____ the _____.
- **2.** To add $\frac{x^2-3}{x^2-5x+6}$ and $\frac{x-4}{x^3-4x^2+4x}$, you should first factor the ______ of each fraction. Then use the factorizations to find the ______ of x^2-5x+6 and x^3-4x^2+4x . This is the ______ for the two fractions.
- **3.** When you add or subtract fractions, you often need to rewrite the fractions as equivalent fractions. You do this so that the resulting equivalent fractions will each have a denominator equal to the of the original fractions.
- **4.** To add or subtract two fractions that have the same denominator, you add or subtract their _____ and keep the same _____.
- **5.** The sum or difference of two rational expressions should be written as a polynomial or as a fraction in ______.

Warm-up (lesson 12.2)

- 1. Find the LCM of $13xy^3$ and $20x^2y^2z$.
- 2. Simplify: $\frac{3}{mn} + \frac{4}{5m} =$
- 3. Simplify: $\frac{x+5}{2x-12} \frac{x+2}{3x-18} =$

Solving Rational Equations

Objective

☐ I can solve Rational Equations

Vocabulary

A rational equation is _____

Hint: When solving a rational equation, eliminate the fractions first! Check the solutions in the original equation

Example Solve
$$\frac{9}{10} + \frac{2}{x+1} = \frac{2}{5}$$
.

Instruction

Restriction:

$$\mathbf{1.} \, \frac{2y}{3} - \frac{y+3}{6} = 2$$

$$4. \frac{3m+2}{5m} + \frac{2m-1}{2m} = 4$$

 $5. \frac{4}{x-1} = \frac{x+1}{12}$

$$9. \frac{x-2}{x+4} = \frac{x+1}{x+10}$$

#5 Restriction:

#9 Restriction:

19.
$$\frac{1}{n+3} + \frac{5}{n^2-9} = \frac{2}{n-3}$$

#19 Restriction: _____

21.
$$\frac{x-8}{2x+2} + \frac{x}{2x+2} = \frac{2x-3}{x+1}$$

#21 Restriction: _____

22.
$$\frac{12s+19}{s^2+7s+12} - \frac{3}{s+3} = \frac{5}{s+4}$$

#22 Restriction: