12.1 Probability and Measurement

Learning Targets:

- I can use lists, tables, and tree diagrams to represent sample spaces.
- I can use the Fundamental Counting Principle to count outcomes.

$\begin{aligned} & \text { B } \\ & \text { O} \\ & \text { OU } \\ & \text { Un } \end{aligned}$	Term/ Concept	Definition/Example
	Experiment	A situation involving \qquad that leads to results called \qquad .
	Outcomes	The \qquad of a single performance or \qquad of an experiment.
	Event	One or more ___ of an ___ .
	Sample Space	The set of all
	Tree Diagram	A way to represent the ___ of an experiment.
E En E. E. 0.	Example 1: A coin is tossed twice. Represent the sample space for this experiment by making a tree diagram.	

Example 4:	
A pizza shop offers 4 different sizes, 3 types of crust, 2 types of sauce and 14 toppings. How many	
different one-topping pizzas can you order?	
Example 5: How many passwords can you make if each password must contain 4 letters followed by 2 digits? Assume that letters and digits may be repeated.	
Example 6: How many passwords can you make if each password must contain 4 letters followed by 2 digits? Assume that letters and digits may be not be repeated.	Your turn: How many different license plates are possible if each plate has 3 letters followed by 3 digits? Letters may not be repeated but digits may be repeated.

12.2 Probability with Permutations and Combinations

Learning Targets:

- I can use permutations with probability.
- I can use combinations with probability.

	Term/ Concept	Definition/Example
	Factorial	The factorial of a positive integer n, written \qquad is the product of the positive integers less than or equal to n. $\text { Ex) } 4!=$
	Example 1: You have 10 new songs on your iPod. How many ways are there to arrange a playlist with all 10 songs?	
	Your Turn: You have 5 button down shirts on hangers. How many ways are there to arrange the hangers in your closet?	
	Term/ Concept	Definition/Example
	Permutation	A permutation is an arrangement of objects in which \qquad is important. The number of permutations of n objects taken r at a time is denoted by \qquad and given by \qquad .
	Example 2: Find the number of permutations of 5 objects taken 2 at a time.	
会	Your turn: Find the number of permutations of 6 objects taken 4 at a time.	

| Example 3: |
| :--- | :--- | :--- |
| You have 10 new songs on your iPod. How many ways are there to arrange 4 out of the 10 songs |
| to make a playlist? |

| Your Turn: |
| :--- | :--- |
| State whether you would use a Permutation or a Combination for each of the following scenarios: |
| a)Eight people enter the Best Picture contest. How many ways can blue, red, and green ribbons
 be awarded? |
| b) Five cousins at a family reunion decide that three of them will go to pick up a pizza. How |
| many ways can they choose three people to go? |
| c)Sixty people are on a school's football team. Five people are chosen randomly for drug testing.
 How many ways could a person be chosen for drug testing? |
| d)Twenty students are running for the four representative positions for your class in the Student
 Senate. In how many different ways can these positions be filled? |
| e)There are four sprinters on the high school track team. How many ways can these four athletes
 be arranged to form a relay team? |
| Example 5: |
| Kevin can invite 6 of his 20 friends to a bowling party. If he chooses to invite friends at random, |
| what is the probability that his friends Alan, Bob, Chris, Daniel, Ellen, and Frank are chosen? |

12.3 Geometric Probability

Learning Targets:

- I can solve problems involving geometric probability.
- I can solve problems involving sectors and segments of circles.

	Term/ Concept	Definition/Example		Picture
	Probability Involving Area	If a point in region A is chosen at random, then the probability $P(B)$ that the point chosen is in region b is$P(B)=$$\qquad$		
		A	A	

Example 1: Find the probability that a point randomly chosen inside the rectangle lies inside the square.

Example 3:

Find the probability of a spinner landing in the red sector in the region below.

Example 2: Find the probability that a randomly chosen point lies inside the shaded region.

Your Turn:

Find the probability of a spinner landing in a blue sector in the region below.

Example 4: Find the probability that a point randomly chosen lies inside the white region of the target below.

Your Turn: Find the probability that an arrow lands in the blue section of the target below.

12.4 Finding Probabilities of Independent and Dependent Events

Learning Targets:

- I can find the probabilities of independent and dependent events.
- I can find probabilities of events given the occurrence of other events.

	Term/ Concept	Definition/Example
	Compound Events	A compound event consists of ___ simple events.
	Independent Events	Events A and B are independent events if the probability that A occurs \qquad \qquad affect the probability that B occurs.
	Dependent Events	Events A and B are dependent events if the probability that A occurs in some way \qquad the probability that B occurs.
	Example 1: Determine whether a) One coin is tosse b) When choosing without replacing c) Wednesday's lot	e events are independent or dependent. , and then a second coin is tossed. he order to present a classroom project, a teacher chooses one student's name it, and then a second name is chosen. ery numbers and Saturday's lottery numbers.
寿	Your turn: Determine whether a) A card is selecte b) Andrea selects a Tuesday.	e events are independent or dependent. from a deck of cards and put back. Then a second card is selected. hirt from her closet to wear on Monday and then a different shirt to wear on

	Term/ Concept	Definition/Example
	Multiplication Rule	The probability of event A and event B occurring is \qquad (This rule only applies if A and B are independent events.)
	Example 2: Suppose you roll two A: Roll a 2 B: Roll a 2 a. Find $\mathrm{P}(\mathrm{A})$ b. Find $P(B)$ c. Find $P(A$	dice (one black, one white). Some events are defined below: the black die the white die
	Example 3: Suppose you roll a	r die 4 times. What is the probability you roll a " 6 " on all 4 rolls?
	Your turn: You take a 5-questi answers/	true/false quiz. What is the probability that you correctly guess all 5
	Term/ Concept	Definition/Example
	Multiplication Rule - Part 2	The probability of event A and event B occurring if A and B are dependent events is the product of the probability of A and the probability of B following A, written _. \qquad

| Example 4: |
| :--- | :--- |
| At a picnic Julio reaches into an ice-filled cooler containing 8 regular and 5 diet soft drinks. |
| Jennifer then decides to grab a drink as well. What is the probability that both people select a |
| regular soft drink if Julio does NOT put his drink back into the cooler? |

12.5 Probabilities of Mutually Exclusive Events

Learning Targets:

- I can find probabilities of events that are mutually exclusive and events that are not mutually exclusive.

	Term/ Concept	Definition/Example
类	Mutually Exclusive	If two events cannot happen at the same time, they are \qquad \qquad (These events have no outcomes in common).
	Example 1: At Wayside High School, freshmen, sophomores, juniors, and seniors can all run for Student Council president. Determine whether the following events are mutually exclusive or not mutually exclusive. a) A junior winning the election or a senior winning the election. b) A sophomore winning the election or a female winning the election. c) A freshmen winning the election or a male winning the election.	
	Your turn: Determine whether the following events are mutually exclusive or not mutually exclusive. a) Drawing an ace or a club from a standard deck of cards. b) Selecting a number at random from the integers from 1 to 100 and getting a number divisible by 5 or a number divisible by 10 .	
	Term/ Concept	Definition/Example
	Addition Rule	If two events cannot happen at the same time, then the probability of A or B occurring is \qquad .

E Example 2:

Ramon makes a playlist that consists of songs from three different albums by his favorite artist. If he lets his digital media player select the songs from this list at random, what is the probability that the first song played is from Album 1 or Album 2?

Album	\# of songs
1	10
2	12
3	13

Example 3:

If you draw an M\&M candy at random from a bag of the candies, the candy you draw will have one of 6 colors. The table below gives the probability of each color for a randomly chosen milk chocolate M\&M.

Color	Brown	Red	Yellow	Green	Orange	Blue
Probability	0.13	0.13	0.14	0.16	0.20	

a. What is the probability of drawing a blue M\&M?
b. What is the probability of drawing an M\&M that is not green?
c. What is the probability of drawing an M\&M that is green, yellow, or blue?
d. What is the probability that of drawing an M\&M that is not yellow or red?

Your Turn:

If you win the ring toss game at a certain carnival, you receive a stuffed animal. If the stuffed animal is selected at random from among 15 puppies, 16 kittens, 14 frogs, 25 snakes, and 10 unicorns, what is the probability that a winner receives a puppy, a kitten, or a unicorn?

	Term/ Concept	Definition/Example
	Addition Rule, Part 2	If two events are NOT mutually exclusive (can happen at the same time), then the probability of A or B occurring is the sum of the probability of A and the probability of B minus the probability of both occurring, denoted \qquad
	Example 4: One card is drawn from a standard deck. What is the probability of getting a heart or a king?	
	Example 5: One card is drawn	m a standard deck. What is the probability of getting a red card or an ace?
	Your turn: One card is drawn	m a standard deck. What is the probability of getting a club or a face card?

12.6 Two-Way Frequency Tables

Learning Targets:

- I can find the probabilities of events using two-way frequency tables.

$\begin{aligned} & \text { 曹 } \\ & \vec{E} \\ & \text { 悉 } \end{aligned}$	Example 1: A statistics class is made up of $11^{\text {th }}$ and $12^{\text {th }}$ grade students, some male and some f distribution is shown in the table below.			
		$11^{\text {th }}$ grade	$12^{\text {th }}$ grade	Total
	Male	8	12	
	Female	4	6	
	Total			

Suppose that the teacher randomly picks a student from the class. Some events are defined below:
A: Student is male
B: Student is female
C: Student is in $11^{\text {th }}$ grade
D: Student is in $12^{\text {th }}$ grade
a. Find $\mathrm{P}(\mathrm{A})$
b. Find $\mathrm{P}(\mathrm{B})$
c. Find $\mathrm{P}(\mathrm{C})$
d. Find $P(D)$
e. What is the probability that the student is a girl if we know she is in $11^{\text {th }}$ grade?
f. What is the probability that the student is in $12^{\text {th }}$ grade if we know she is a female?
g. What is the probability that the student is a male if we know he is in $12^{\text {th }}$ grade?
h. What is the probability that the student is male if we know the student is female?

Michael asks a random sample of 160 upperclassmen at his high school whether or not they plan to attend the prom. He finds that 44 seniors and 32 juniors plan to attend the prom, while 25 seniors and 59 juniors do not plan to attend. Organize these responses into a two-way frequency table. Then, use the table to answer some questions below.

	Attending	Not Attending	Total
Seniors			
Juniors			
Total			

a. How many seniors were surveyed?
b. How many of the students that were surveyed plan to attend the prom?
c. What is the probability that a student is a senior?
d. What is the probability that a student is planning to attend the prom?
e. What is the probability that a student is a senior if we know he/she plans to attend the prom?
f. What is the probability that the student plans to attend prom if we know he/she is a senior?

