Name:

Determine the equation of any vertical asymptotes and the values of \mathbf{x} for any holes in the graph. Then graph the function.

Vertical asymptote(s): \qquad

1. $\quad f(x)=\frac{x-1}{x^{2}-4 x+3}$

State whether the each equation represents direct, joint, or inverse variation. Then name the constant of variation.
2. $p=\frac{4}{q} \quad$ 3. $r w=15 \quad$ 4. $t=16 r h$

Find the value of each.
5. If y varies directly as x and $y=35$ when $x=7$, find y when $x=11$.

If y varies jointly as x and z and $y=18$ when $x=2$ and $z=3$, find y when $x=5$ and 6. $\quad z=6$.
7. If y varies inversely as x and $y=3$ when $x=14$, find x when $y=6$.

Find each value.

1. If y varies directly as x and $y=9$ when $x=6$, find y when $x=8$.
2. If y varies directly as x and $x=15$ when $y=5$, find x when $y=9$.

5 . Suppose y varies jointly as x and z. Find y when $x=5$ and $z=3$, if $y=18$ when $x=3$ and $z=2$.
7. Suppose y varies jointly as x and z. Find y when $x=4$ and $z=11$, if $y=60$ when $x=3$ and $z=5$.
2. If y varies directly as x and $y=16$ when $x=36$, find y when $x=54$.
4. If y varies directly as x and $x=33$ when $y=22$, find x when $y=32$.
6. Suppose y varies jointly as x and z. Find y when $x=6$ and $z=8$, if $y=6$ when $x=4$ and $z=2$.
8. Suppose y varies jointly as x and z. Find y when $x=5$ and $z=2$, if $y=84$ when $x=4$ and $z=7$.

State whether each equation represents a direct, joint, or inverse variation. Then name the constant of variation.

1. $c=12 m$
2. $p=\frac{4}{q}$
3. $A=\frac{1}{2} b h$
4. $r w=15$
5. $y=2 r s t$
6. $f=5280 \mathrm{~m}$
7. $y=0.2 \mathrm{~s}$
8. $v z=-25$
9. $t=16 r h$

Identify the function represented by each graph.

2.

3.

4.

5.

6.

7.

8.

9.

