\qquad

Solve each system of equations by graphing.

1. $\begin{aligned} & x=2 \\ & y=0\end{aligned}$
2. $\begin{aligned} & y=-3 x+6 \\ & y=2 x-4\end{aligned}$

$$
y=4-3 x
$$

3. $y=-\frac{1}{2} x-1$

4. $\begin{aligned} & y=4-x \\ & y=x-2\end{aligned}$

$$
y=-2 x+2
$$

5. $y=\frac{1}{3} x-5$

6. $y=x$
$y=-3 x+4$

Graph each system of equations and describe it as consistent and independent, consistent and dependent, or inconsistent.
7. $\begin{aligned} & y=-3 x \\ & y=-3 x+2\end{aligned}$
8. $y=x-5$
$-2 x+2 y=-10$
9. $2 x-5 y=10$
$3 x+y=15$

Algebra 2A
1.2

Name

Assignment

Solve each system of equations by using substitution.

1. $\begin{aligned} & m+n=20 \\ & m-n=-4\end{aligned}$
2. $\begin{aligned} & x+3 y=-3 \\ & 4 x+3 y=6\end{aligned}$
3. $\begin{aligned} & x-y=1 \\ & 2 x+3 y=12\end{aligned}$
4. $\begin{aligned} & 3 x+y=5 \\ & 2 x-y=5\end{aligned}$
5. $\begin{aligned} & 2 x+3 y=-4 \\ & x+y=3\end{aligned}$

Algebra 2A
1.3

Name

Assignment

Solve each system of equations by using elimination.

1. $\begin{aligned} & 2 x-y=5 \\ & 3 x+y=5\end{aligned}$
2. $\begin{aligned} & 2 x-y=3 \\ & 3 x+y=2\end{aligned}$
3. $\begin{aligned} & 3 x-2 y=2 \\ & 3 x+4 y=50\end{aligned}$
4. $\begin{aligned} & 2 f+3 g=9 \\ & f-g=2\end{aligned}$
5. $\begin{aligned} & -2 x+y=-1 \\ & x+2 y=3\end{aligned}$
6. $\begin{aligned} & 2 x-y=12 \\ & 2 x-y=6\end{aligned}$
\qquad

Solve each system of inequalities by graphing.
$x<1$
$y \geq-1$

2. $\begin{aligned} x \geq-3 \\ \end{aligned}$
$y \geq-3$

3. $x \leq 2$
$x>4$

Find the coordinates of the vertices of the figure formed by each system of inequalities.

$$
y<1
$$

$y \geq 3-x$

$$
x \geq-2
$$

4. $x<0$

$$
y \geq-x-1
$$

5. $y \leq 3$
$x<5$
6. $y \geq x-2$
$x+y \leq 2$

\qquad

Graph each system of inequalities. Name the coordinates of the vertices of the feasible region. Find the maximum and minimum values of the given function for this region.
$y \geq 2$
$1 \leq x \leq 5$
$y \leq x+3$
$f(x, y)=3 x-2 y$

$x+y \geq 2$
$4 y \leq x+8$
$y \geq 2 x-5$
$f(x, y)=4 x+3 y$

\qquad

A glass blower can form 8 simple vases or 2 elaborate vases in an hour. In a work shift of no more than 8 hours, the worker must form at least 40 vases.

1. Let x represent the hours forming simple vases and y the hours forming elaborate vases. Write a system of inequalities involving the time spent on each type of vase.
2. If the glass blower makes a profit of $\$ 30$ per hour worked on the simple vases and $\$ 35$ per hour worked on the elaborate vases, write a function for the total profit on the vases.
3. Find the number of hours the worker should spend on each type of vase to maximize profit. What is that profit?
