1.1 Points, Lines, and Planes

	Term	Definition	Named by/Properties	Picture
	Point			
	Line			
	Plane			
	Collinear			
	Coplanar			
	Example 1: a. Name a line that contains point Q. \qquad b. Name the plane that contains lines n and m. \qquad c. Name the intersection of lines n and m. \qquad d. Name a point not contained on lines n or m. \qquad e. What is another name for line n ? \qquad f. Name 3 collinear points. \qquad			

$\begin{aligned} & \text { 블 } \\ & \text { E } \\ & \text { ㄹ. } \\ & \text { ㅂ․ } \end{aligned}$	Example 2: Where do planes \mathscr{P} and planes \mathscr{N} intersect?
	Your Turn: Draw and label a plane \mathscr{R} that meets all the following conditions. Plane \mathscr{R} contains $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ which intersect at point E. Point G is located on plane \mathscr{R} but is not collinear with $\overleftrightarrow{A B}$ or $\overleftrightarrow{C D}$. Plane \mathcal{Q} intersects plane \mathscr{R} at $\overleftrightarrow{L M}$.

1.2 Measuring Segments

0 0 0 0	- I can measure segments. - I can find the measure of missing parts of segments with numbers given. - I can find the measure of missing parts of segments using algebra.

	Term	Definition	Named by/Properties	Picture
	Line Segment			
	Segment Addition Postulate (SAP)			
	Between and/or Betweenness			

Geometry A Unit 1: Tools for Geometry

	Term	Definition	Named by/Properties	Picture
	Congruent Segments			

$$
y=\ldots \quad P Q=
$$

1.3 Distance and Midpoints

	- I can find the distance between 2 points. - I can find the midpoint of a segment.

Method 1: Pythagorean Theorem

Your turn:

Find the distance between $(-2,-3)$ and $(3,1)$ geometrically.

Method 2: Distance Formula
The distance between 2 points (x_{1}, y_{1}) and (x_{2}, y_{2}) can be computed as follows:

Example 2:	
Find the distance between $(1,2)$ and (3, 5) using	
the Distance Formula.	

Example 3:
Find the distance between $(4,7)$ and $(-3,-6)$ using the Distance Formula.
Y Your Turn:

Find the distance between $(7,-8)$ and $(-4,-2)$ using the Distance Formula.

Example 5:
The coordinates of the vertices of triangle $A B C$ are located at $A(4,3), B(1,-2)$, and $C(-5,1)$. Find the perimeter of the triangle.

	Term	Definition	Named by/Properties	Picture
	Midpoint			
	Segment Bisector			

If a segment has endpoints with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, then the coordinates of the midpoint of the segment are

E Example 6:
Find the coordinates of the midpoint of a segment having the given endpoints.
ล. $T(5,-4)$ and $H(-1,2)$

| Your Turn: |
| :--- | :--- | :--- |
| Find the coordinates of the midpoint of a |
| segment having the given endpoints. $V(2,9)$ |
| and $K(5,-3)$ |\quad| Your Turn: |
| :--- |
| Find the coordinates of the midpoint of a |
| segment having the given endpoints. $W(-7,10)$ |
| and $X(6,-8)$ |

1.4 Angle Measure

	Term	Definition	Named by/Properties	Picture
	Ray			
	Angle			
	Congruent Angles			
	Angle Bisector			
	Angle Addition Postulate (AAP)			

Example 1:
Refer to the figure at the right.
a. Name the vertex of $\angle 2$.
b. Name the sides of $\angle 1$.
e . Wame the sides of $\angle 3$. Write 2 other names for $\angle 2$.
f. How many total angles are shown in the
figure?

Geometry A Unit 1: Tools for Geometry

	Classifying Angles		
	Name of Angle	Degree Measure	
	Acute Angle		
	Zero Angle		
Right Angle			
Obtuse Angle			

1.5 Angle Relationships

哭		I can identify and use special pairs of angles (complementary, supplementary, adjacent, vertical, linear pair). I can identify perpendicular lines.

	Angle Relationships		
	Angle Pair	Description	Picture
	Complementary Angles		
	Supplementary Angles		
	Adjacent Angles		
	Linear Pair		
	Vertical Angles		
	Perpendicular Lines		

	Example 4: Refer to the figure at the right. If $m \angle E B F=3 x+10$, $m \angle D B E=x, m \angle F B C=25^{\circ}$, and $\overrightarrow{B D} \perp \overrightarrow{B F}$. Find the indicated values. $\begin{aligned} x & = \\ m \angle E B F & = \\ m \angle A B D & = \end{aligned}$
	Example 5: Two angles are complementary. The measure of one angle is 21 more than twice the measure of the other angle. Find the measure of each angle.

1.6 Polygons

$\stackrel{0}{0}$	- I can identify and name polygons. - I can find perimeters of polygons.

	Naming a Polygon by its Number of Sides			
	Name		Description	Picture
			A polygon with ___ sides	
			A polygon with ___ sides	
			A polygon with ____ sides	
			A polygon with ___ sides	
			A polygon with ____ sides	
			A polygon with \qquad sides	
			A polygon with ___ sides	
			A polygon with ___ sides	
			A polygon with ___ sides	
	n-gon		A polygon with n sides	25-gon: a polygon with \qquad sides

2. $x=6$

E	Example 4:
品	Find the lengt

Find the length of each side of the polygon for the given perimeter.
a. Perimeter $=48$ inches

b. Perimeter $=39$ centimeters

Your Turn:	Your Turn:		
Name the polygon below its			
Find the perimeter of the figure			
number of sides. Then classify			
below.			
it as concave or convex and			
regular or irregular.		\quad	Your Turn:
:---			
Find the length of each side of			
the polygon for the given			
perimeter.			
Perimeter $=89$ feet			

苞	- I can make basic constructions using a straightedge. - I can make basic constructions using a compass.		
	Tools!		
	Tool	Description	Picture
	Straightedge	A ruler with no markings on it.	
	Compass	A geometric tool used to draw \qquad and parts of circles called \qquad .	
	Constructions	A geometric figure drawn using a \qquad and/or a	

	Term	Description	Picture
	Perpendicular lines (Review)	Two lines that intersect to form a	Symbol: Picture:
	Perpendicular Bisector of a Segment	A line, segment, or ray that is perpendicular to the segment at its \qquad	
	Angle Bisector (Review)	A line, segment, or ray that cuts an angle into 2 \qquad	

| CONSTRUCTING A PERPENDICULAR BISECTOR |
| :--- | :--- |
| Given: $\overrightarrow{A B}$ |
| Construct: $\overleftrightarrow{X Y}$ so that $\overleftrightarrow{X Y}$ is the perpendicular bisector of $\overrightarrow{A B}$ |
| Step 1: Put the compass point on point A. Extend the compass MORE THAN half way along the
 segment and draw a large arc.
 Step 2: With the same compass setting, put the compass point on B. Draw a large arc. Label the
 points where the two large arcs intersect, X and Y.
 Step 3: Draw $\overleftrightarrow{X Y}$ with your straightedge. Label the intersection of $\overleftrightarrow{X Y}$ and $\overrightarrow{A B}$ with point M.
 What do we call point M ?
 How do we know that the line we just created is the perpendicular bisector of $\overline{A B}$? What tool(s)
 could we use to verify this? |

CONSTRUCTING ANGLE BISECTORS
Step 1: With a compass point on vertex A, draw an arc that intersects
the sides of $\angle A$. Label the points of intersection B and C.
Step 2: Put the compass point on C and draw an arc (in the large opening of the angle). With the
same compass setting, draw an arc using point B. Be sure that your arcs intersect. Label the point
where the two arcs intersect as D.
Step 3: Draw $\overrightarrow{A D}$.
How do we know that $\overrightarrow{A D}$ is the bisector of $\angle A$? What tool could you use to verify this? $\angle A$.

