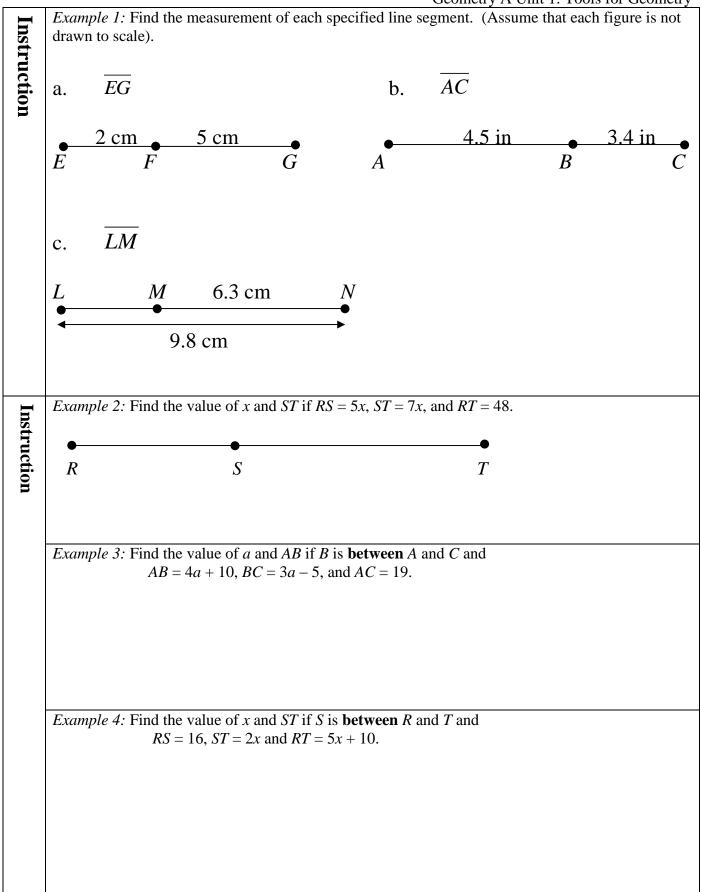
# **<u>1.1 Points, Lines, and Planes</u>** Targets

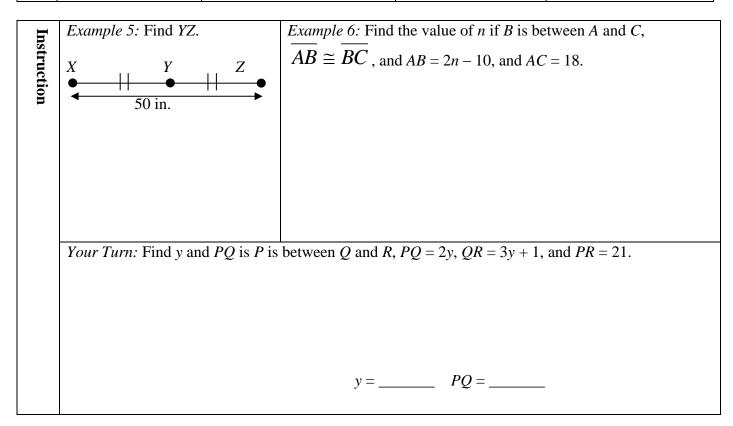
- I can identify and draw points, lines, and planes.
  I can identify and draw collinear and coplanar points.
- I can identify and draw intersecting lines and planes in space.

| Voc         | Term             | Definition                                     | Named<br>by/Properties | Picture |
|-------------|------------------|------------------------------------------------|------------------------|---------|
| Vocabulary  | Point            |                                                |                        |         |
|             | Line             |                                                |                        |         |
|             | Plane            |                                                |                        |         |
|             | Collinear        |                                                |                        |         |
|             | Coplanar         |                                                |                        |         |
| In          | Example 1:       |                                                |                        |         |
| Instruction |                  | $\mathcal{B}$                                  | R Q M<br>R S n         |         |
|             | a. Name a line t | hat contains point <i>Q</i>                    |                        |         |
|             | b. Name the pla  | ne that contains lines <i>n</i> and <i>m</i> . |                        |         |
|             | c. Name the inte | ersection of lines <i>n</i> and <i>m</i> .     |                        |         |
|             | d. Name a point  | not contained on lines $n$ or $m$ .            |                        |         |
|             | e. What is anoth | her name for line <i>n</i> ?                   |                        |         |
|             | f. Name 3 collin | near points.                                   |                        |         |


| Instruction | Example 2:<br>Where do planes $\mathscr{P}$ and planes $\mathscr{N}$ intersect?                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instruction | Your Turn:         Draw and label a plane $\mathscr{R}$ that meets all the following conditions. $\circ$ Plane $\mathscr{R}$ contains $\overrightarrow{AB}$ and $\overrightarrow{CD}$ which intersect at point <i>E</i> . $\circ$ Point <i>G</i> is located on plane $\mathscr{R}$ but is not collinear with $\overrightarrow{AB}$ or $\overrightarrow{CD}$ . $\circ$ Plane $\mathscr{C}$ intersects plane $\mathscr{R}$ at $\overrightarrow{LM}$ . |

#### **1.2 Measuring Segments**

Targets


- I can measure segments.
- I can find the measure of missing parts of segments with numbers given.
  I can find the measure of missing parts of segments using algebra.

| Voc        | Term                                | Definition | Named<br>by/Properties | Picture |
|------------|-------------------------------------|------------|------------------------|---------|
| Vocabulary | Line Segment                        |            |                        |         |
|            | Segment Addition<br>Postulate (SAP) |            |                        |         |
|            | Between and/or<br>Betweenness       |            |                        |         |



Geometry A Unit 1: Tools for Geometry

| Voc     | Term                  | Definition | Named<br>by/Properties | Picture |
|---------|-----------------------|------------|------------------------|---------|
| abulary | Congruent<br>Segments |            |                        |         |



## **1.3 Distance and Midpoints**

- Targets
- I can find the distance between 2 points.
  I can find the midpoint of a segment.

## Method 1: Pythagorean Theorem

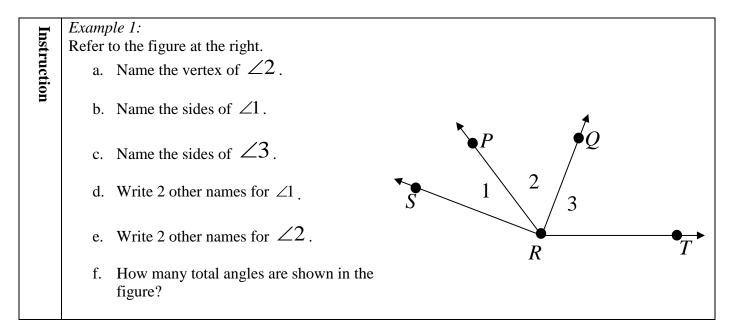
| Ins         | <i>Example 1:</i><br>Find the distance between (1, 2) and (3, 5) | <i>Your turn:</i><br>Find the distance between (-2, -3) and (3, 1) |
|-------------|------------------------------------------------------------------|--------------------------------------------------------------------|
| Instruction | geometrically.                                                   | geometrically.                                                     |
| tion        |                                                                  |                                                                    |
|             |                                                                  |                                                                    |
|             |                                                                  |                                                                    |
|             |                                                                  |                                                                    |
|             |                                                                  |                                                                    |
|             |                                                                  |                                                                    |
|             |                                                                  |                                                                    |
|             |                                                                  |                                                                    |
|             |                                                                  |                                                                    |
|             |                                                                  |                                                                    |
|             | od 2: Distance Formula                                           |                                                                    |
| I ne d      | istance between 2 points $(x_1, y_1)$ and $(x_2, y_2)$ can be    | computed as follows:                                               |
|             |                                                                  |                                                                    |
|             | Example 2:                                                       | Example 3:                                                         |
| Instr       | Find the distance between $(1, 2)$ and $(3, 5)$ using            | Find the distance between (4, 7) and (-3, -6)                      |
| Instruction | the Distance Formula.                                            | using the Distance Formula.                                        |
| 'n          |                                                                  |                                                                    |
|             |                                                                  |                                                                    |
|             |                                                                  |                                                                    |
|             |                                                                  |                                                                    |
|             |                                                                  |                                                                    |
|             |                                                                  |                                                                    |

| Your Turn:                                                                 |
|----------------------------------------------------------------------------|
| Find the distance between (7, -8) and (-4, -2) using the Distance Formula. |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |

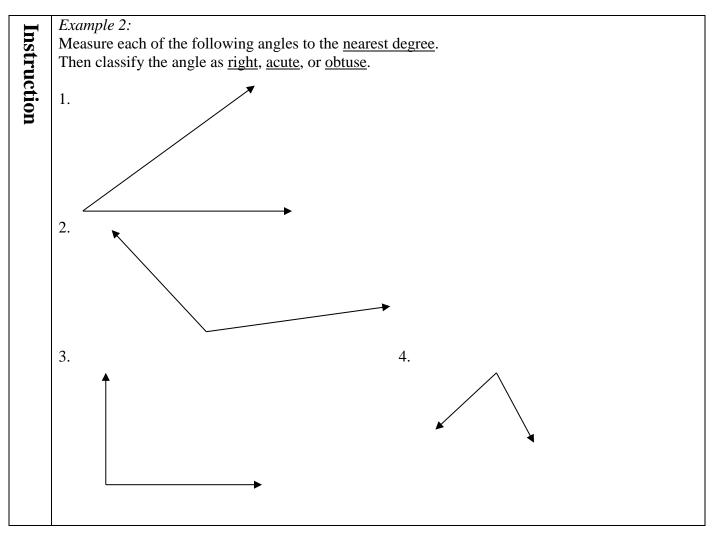
| H           | Example 5:                                                              |   |             |         |          |   |           |             |          |
|-------------|-------------------------------------------------------------------------|---|-------------|---------|----------|---|-----------|-------------|----------|
| ns          | The coordinates of the vertices of triangle ABC are located at          |   |             |         |          |   |           |             | 1        |
| Instruction |                                                                         |   |             |         | у        |   |           |             |          |
| uc          | A(4, 3), B(1, -2), and $C(-5, 1)$ . Find the perimeter of the triangle. |   |             |         |          |   |           |             |          |
| tic         |                                                                         |   |             |         |          |   |           |             | -<br>-   |
| 'n          |                                                                         |   |             | _       | _        |   |           |             | ł        |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         | 0        |   |           | x           |          |
|             |                                                                         |   |             |         | <b>–</b> |   | +         | ^           | i.       |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         | -        |   |           |             |          |
|             |                                                                         |   |             | _       |          |   |           |             |          |
|             |                                                                         | L |             |         | 1        | • |           |             | <u>i</u> |
|             |                                                                         |   | 1.1.6.91.00 | diamet. |          |   | in a sub- | e o o de la |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |
|             |                                                                         |   |             |         |          |   |           |             |          |

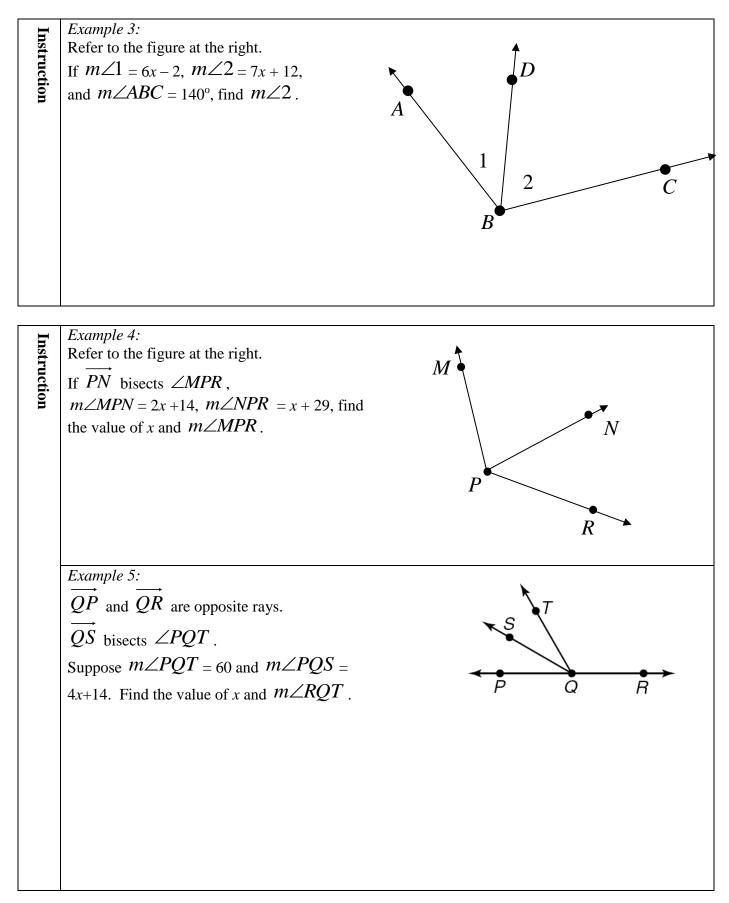
| Voc       | Term             | Definition | Named<br>by/Properties | Picture |
|-----------|------------------|------------|------------------------|---------|
| ocabulary | Midpoint         |            |                        |         |
|           | Segment Bisector |            |                        |         |

# **Midpoint Formula**

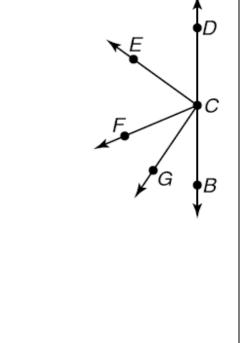

If a segment has endpoints with coordinates  $(x_1, y_1)$  and  $(x_2, y_2)$ , then the coordinates of the midpoint of the segment are

| F           | Example 6:                                                                                                                              |                                                                          |                       |          |                     |                           |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|----------|---------------------|---------------------------|--|
| Instruction | Find the coordinates of the midpoint of a segmen <i>T</i> (5, -4) and <i>H</i> (-1, 2)                                                  | t having the gi                                                          | ven endp              | oints.   |                     |                           |  |
| Instruction | <i>Your Turn:</i><br>Find the coordinates of the midpoint of a segment having the given endpoints. <i>V</i> (2, 9) and <i>K</i> (5, -3) | <i>Your Turn:</i><br>Find the coo<br>segment hav<br>and <i>X</i> (6, -8) | rdinates of ing the g | of the m | idpoint<br>lpoints. | of a<br><i>W</i> (-7, 10) |  |


## **1.4 Angle Measure**


I can measure angles.
 I can classify types of angles.
 I can identify and use congruent angles.
 I can identify and use the bisector of an angle.

| Voca       | Term                              | Definition | Named<br>by/Properties | Picture |
|------------|-----------------------------------|------------|------------------------|---------|
| Vocabulary | Ray                               |            |                        |         |
|            | Angle                             |            |                        |         |
|            | Congruent Angles                  |            |                        |         |
|            | Angle Bisector                    |            |                        |         |
|            | Angle Addition<br>Postulate (AAP) |            |                        |         |



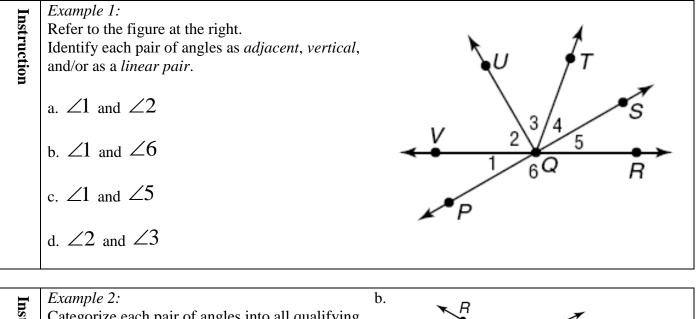

| Vo         |                | Classifying Angles |         |  |  |  |
|------------|----------------|--------------------|---------|--|--|--|
| Vocabulary | Name of Angle  | Degree Measure     | Picture |  |  |  |
| ary        | Zero Angle     |                    |         |  |  |  |
|            | Acute Angle    |                    |         |  |  |  |
|            | Right Angle    |                    |         |  |  |  |
|            | Obtuse Angle   |                    |         |  |  |  |
|            | Straight Angle |                    |         |  |  |  |
|            |                |                    |         |  |  |  |

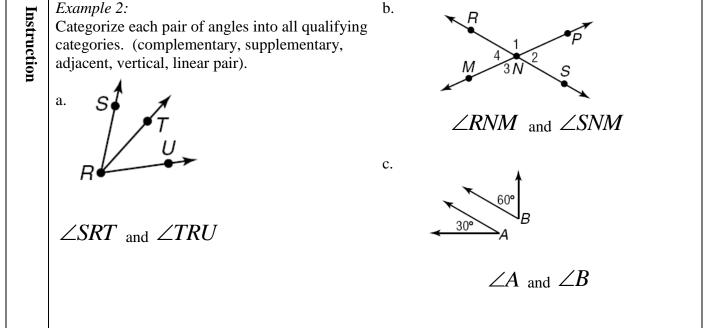


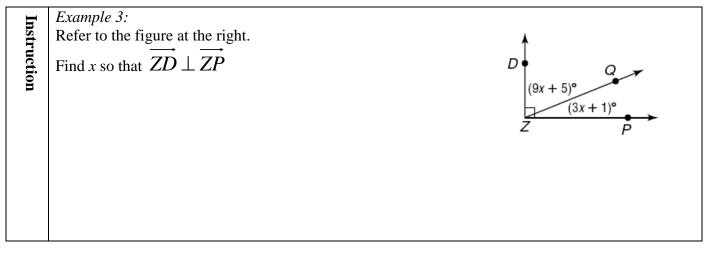


*Example 6:*   $\overrightarrow{CB}$  and  $\overrightarrow{CD}$  are opposite rays.  $\overrightarrow{CE}$  bisects  $\angle DCF$ , and  $\overrightarrow{CG}$  bisects  $\angle FCB$ . Suppose  $m\angle DCE = 5x + 10$  and  $m\angle GCF = 4x - 1$ . Find  $m\angle ECF$  and  $m\angle GCE$ .




Your Turn:  $\overrightarrow{BA}$  and  $\overrightarrow{BC}$  are opposite rays.  $\overrightarrow{BF}$  bisects  $\angle CBE$ , and  $\overrightarrow{BD}$  bisects  $\angle ABE$ . Suppose  $m\angle EBF = 6x + 4$  and  $m\angle CBF = 7x - 2$ . Find  $m\angle EBC$  and  $m\angle ABD$ .  $m\angle EBC = \_$  $m\angle ABD = \_$ 

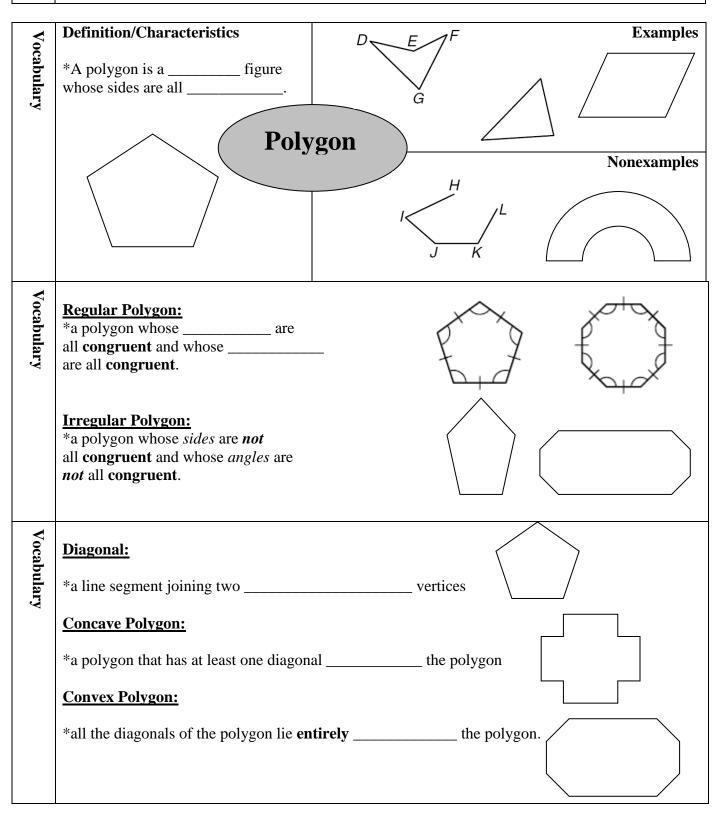

### **<u>1.5 Angle Relationships</u>**


Targets

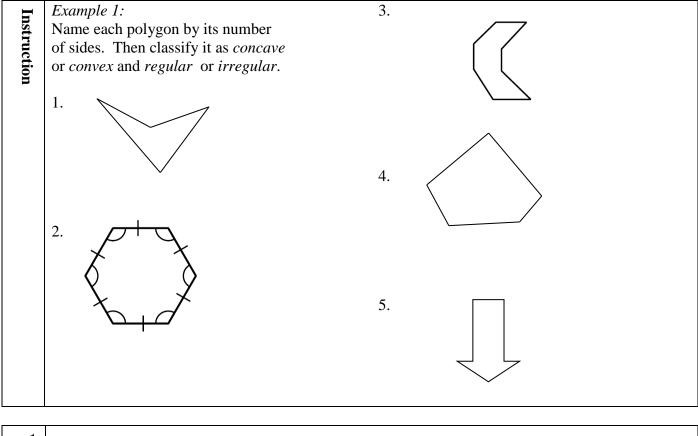
- I can identify and use special pairs of angles (complementary, supplementary, adjacent, vertical, linear pair).
- I can identify perpendicular lines.

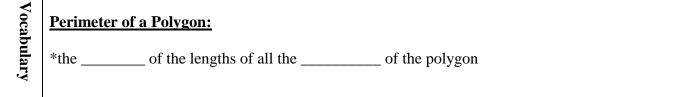
| Vo         |                         | Angle Relationships |         |
|------------|-------------------------|---------------------|---------|
| Vocabulary | Angle Pair              | Description         | Picture |
| ılary      | Complementary<br>Angles |                     |         |
|            | Supplementary<br>Angles |                     |         |
|            | Adjacent Angles         |                     |         |
|            | Linear Pair             |                     |         |
|            | Vertical Angles         |                     |         |
|            | Perpendicular<br>Lines  |                     |         |

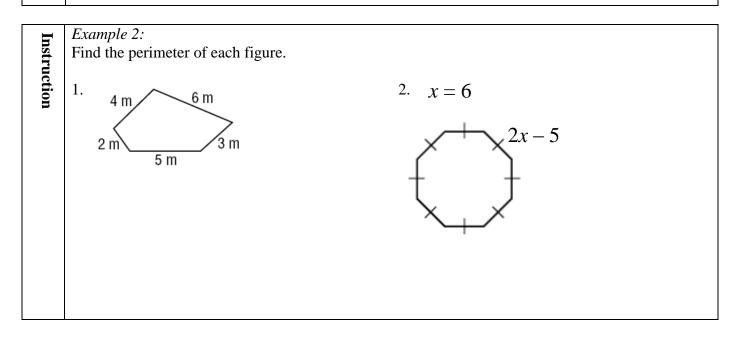


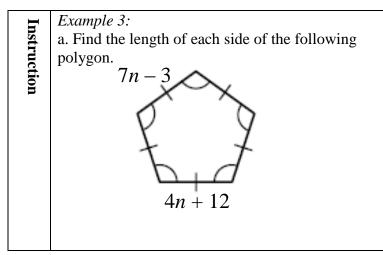




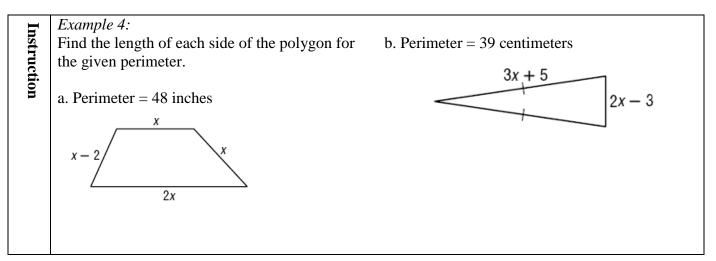


| Instruction | Example 4:<br>Refer to the figure at the right.<br>If $m \angle EBF = 3x + 10$ ,<br>$m \angle DBE = x$ , $m \angle FBC = 25^{\circ}$ , and<br>$\overrightarrow{BD} \perp \overrightarrow{BF}$ . Find the indicated values.<br>$x = \_\_\_$<br>$m \angle EBF = \_\_$<br>$m \angle ABD = \_\_$ |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instruction | <i>Example 5:</i><br>Two angles are <u>complementary</u> . The measure of one angle is 21 more than twice the measure of the other angle. Find the measure of each angle.                                                                                                                    |


#### **1.6 Polygons**


- Targets
- I can identify and name polygons.
- I can find perimeters of polygons.




| Vo         | Nan           | ning a Polygon by its Number of Sides |                                 |
|------------|---------------|---------------------------------------|---------------------------------|
| cab        | Name          | Description                           | Picture                         |
| Vocabulary |               | • A polygon with sides                |                                 |
|            |               | • A polygon with sides                | $\triangleleft$                 |
|            |               | • A polygon with sides                |                                 |
|            |               | • A polygon with sides                |                                 |
|            |               | • A polygon with sides                |                                 |
|            |               | • A polygon with sides                |                                 |
|            |               | • A polygon with sides                |                                 |
|            |               | • A polygon with sides                |                                 |
|            |               | • A polygon with sides                |                                 |
|            | <i>n-</i> gon | • A polygon with $n$ sides            | 25-gon: a polygon with<br>sides |










b. Find the length of one side of a regular octagon whose perimeter is the same perimeter as the perimeter of polygon *ABCDE*.



| Ir          | Your Turn:                                | Your Turn:                                                                     | Your Turn:                           |
|-------------|-------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|
| Instruction | Name the polygon below its                | Find the perimeter of the figure                                               | Find the length of each side of      |
| l nu        | number of sides. Then classify            | below.                                                                         | the polygon for the given            |
| tio         | it as <i>concave</i> or <i>convex</i> and |                                                                                | perimeter.                           |
| ň           | regular or irregular.                     |                                                                                | Perimeter = 89 feet                  |
|             |                                           | 2 in.<br>2 in.<br>2 in.<br>2 in.<br>2 in.<br>10 in.<br>2 in.<br>2 in.<br>2 in. | $x + 9 \underbrace{2x + 2}_{5x - 4}$ |

## **<u>1.7 Basic Constructions</u>**

- I can make basic constructions using a straightedge.
  I can make basic constructions using a compass.

| Targets    |               | sic constructions using a straightedge.<br>sic constructions using a compass. |         |
|------------|---------------|-------------------------------------------------------------------------------|---------|
| Vo         |               | Tools!                                                                        |         |
| cab        | Tool          | Description                                                                   | Picture |
| Vocabulary | Straightedge  | A ruler with no markings on it.                                               |         |
|            | Compass       | A geometric tool used to draw<br>and parts of<br>circles called               |         |
|            | Constructions | A geometric figure drawn using<br>a and/or a<br>                              |         |

| Vo         | Term                                      | Description                                                            | Picture             |
|------------|-------------------------------------------|------------------------------------------------------------------------|---------------------|
| Vocabulary | Perpendicular lines<br>(Review)           | Two lines that intersect to form a                                     | Symbol:<br>Picture: |
|            | Perpendicular<br>Bisector of a<br>Segment | A line, segment, or ray that is<br>perpendicular to the segment at its |                     |
|            | Angle Bisector<br>(Review)                | A line, segment, or ray that cuts an angle into 2                      |                     |

|                   | Geometry A Unit 1: Tools for Geometry |  |
|-------------------|---------------------------------------|--|
| <b>R BISECTOR</b> |                                       |  |
|                   |                                       |  |

|              | Geometry A Unit 1. Tools for Geometry                                                                                                                                            |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coi          | CONSTRUCTING A PERPENDICULAR BISECTOR                                                                                                                                            |
| Construction | Given: $\overline{AB}$ A B                                                                                                                                                       |
| ctior        | Construct: $\overrightarrow{XY}$ so that $\overrightarrow{XY}$ is the perpendicular bisector of $\overrightarrow{AB}$                                                            |
|              |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |
|              | Step 1: Put the compass point on point <i>A</i> . Extend the compass MORE THAN half way along the segment and draw a large arc.                                                  |
|              | Step 2: With the same compass setting, put the compass point on <i>B</i> . Draw a large arc. Label the points where the <b>two large arcs</b> intersect, <i>X</i> and <i>Y</i> . |
|              | Step 3: Draw $\overrightarrow{XY}$ with your straightedge. Label the intersection of $\overrightarrow{XY}$ and $\overrightarrow{AB}$ with point <i>M</i> .                       |
|              | What do we call point <i>M</i> ?                                                                                                                                                 |
|              | How do we know that the line we just created is the perpendicular bisector of $\overline{AB}$ ? What tool(s) could we use to verify this?                                        |
|              |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |

|              | CONSTRUCTION AND EDISECTORS                                                                                       |
|--------------|-------------------------------------------------------------------------------------------------------------------|
| Ω            | CONSTRUCTING ANGLE BISECTORS                                                                                      |
| on           |                                                                                                                   |
| Construction | Given: $\angle A$                                                                                                 |
| <b>n</b>     |                                                                                                                   |
| <u> </u>     | Construct: $\overrightarrow{AD}$ , the bisector of $\angle A$ . A                                                 |
| Ō            |                                                                                                                   |
|              |                                                                                                                   |
|              |                                                                                                                   |
|              | Step 1: With a compass point on vertex A, draw an arc that intersects                                             |
|              | the sides of $\angle A$ . Label the points of intersection B and C.                                               |
|              |                                                                                                                   |
|              |                                                                                                                   |
|              | Step 2: Put the compass point on C and draw an arc (in the large opening of the angle). With the                  |
|              | same compass setting, draw an arc using point B. Be sure that your arcs intersect. Label the point                |
|              | where the two arcs intersect as D.                                                                                |
|              |                                                                                                                   |
|              |                                                                                                                   |
|              | Step 3: Draw AD.                                                                                                  |
|              | Step 5. Dian IID.                                                                                                 |
|              |                                                                                                                   |
|              |                                                                                                                   |
|              | How do we know that $\overrightarrow{AD}$ is the bisector of $\angle A$ ? What tool could you use to verify this? |
|              | The up we know that $AD$ is the disector of $\angle A$ ? what tool could you use to verify this?                  |
|              |                                                                                                                   |
|              |                                                                                                                   |