Unit 1.1 - Solving Systems of Equations by Graphing

Learning Targets:

- I can solve systems of equations by graphing
- I can determine whether a system of equations is consistent and independent, consistent and dependent, or inconsistent.

Solve the system by graphing:

Example 1

$y=2 x+3$
$y=-1 / 2 x+3$
Consistent and independent?
Consistent and dependent?
Inconsistent?

Example 2:
$3 x-3 y=9$
$y=-x+1$

Consistent and independent?
Consistent and dependent?
Inconsistent?

Your Turn

Solve the system of equations by graphing.
$x+3 y=7$
$x-y=3$

Graphing equations with your calculator! ©

1. Make sure each equation is in $y=m x+b$ form.
2. Enter equations in $\mathbf{y}=$ menu
3. Hit ZOOM then "6" for standard window
4. To find the intersection of your equations, hit:
$2^{\text {nd }}$ "TRACE"
\#5 - "INTERSECT"
ENTER

EXAMPLE \#3 Solve the system by graphing
$y=2 x+3$
$y=2 x-5$

Consistent and Independent?
Consistent and Dependent?
Inconsistent?

EXAMPLE \#4 Solve the system by graphing
$y=-2 x+7$
$4 x+2 y=14$

Consistent and Independent?
Consistent and Dependent?
Inconsistent?

Graph the system of equations and describe it as consistent and independent, consistent and dependent, or inconsistent.
$9 x-6 y=-6$
$6 x-4 y=-4$

Big Idea:
Describe the differences between...
Consistent and Independent:

Consistent and Dependent:

Inconsistent:

Unit 1.2 - Solving Systems of Equations Algebraically-Substitution

Warm - Up:
Graph the system of equations and describe it as consistent and independent, consistent and dependent, or inconsistent.
$x+y=5$
$2 x=y-11$

Learning Targets:

- I can solve systems of equations by substitution.

What to do when using substitution:

1. Substitute to get \qquad equation with \qquad variable
2. Solve the equation for the \qquad .
3. Substitute to find the \qquad .

Ex. 1 Solve this system:

$y=3 x+8$
Ex. 2: Solve this system:
$2 x+y=7$
$5 x+2 y=5$
$5 x-3 y=-21$

Example 3: Solve this system:
$x+4 y=26$
$x-5 y=-10$
Your Turn:
$x-3 y=2$
$x+7 y=12$

Example: 4
$2 x+2 y=8$
$y-x=4$
$y=-2 x+3$
$x=2-y$
$3 x+2 y=18$
$4 x+2 y=6$

Big Idea: When should you use substitution?

Warm - Up:
Solve the following system of equations by substitution:

$$
\begin{gathered}
2 j-3 k=3 \\
j+k=14
\end{gathered}
$$

Learning Targets:

- I can solve systems of equations by elimination.

Steps to using ELIMINATION:

1. Start with x and y on the same side of the equation.

$$
(A x+B y=C)
$$

2. Turn the problems into an \qquad or \qquad problem.
3. Add like terms...one of the variables should be \qquad .
4. Solve to find the \qquad variable
5. Substitute to find the other \qquad .

Example 1: Solve

$-3 x+4 y=12$
$3 x-6 y=18$

Example 2: Your turn! Solve

$$
\begin{aligned}
& 4 x-3 y=12 \\
& 2 x+3 y=6
\end{aligned}
$$

Example 3:

Some friends go to the movies. They purchase 2 popcorns and 3 sodas and pay $\$ 25.50$. The next weekend they go again and purchase 5 popcorns and 3 sodas for $\$ 43.50$. How much does the popcorn cost?

Example 4

Use the elimination method to solve the system of equations.
$2 x+3 y=12$
$5 x-2 y=11$

Use the elimination method to solve the system of equations.
$x+3 y=7$
$2 x+5 y=10$

You do these last few...
$u+v=7$
$m-n=-9$
$3 p-5 q=6$
$2 u+v=11$
$7 m+2 n=9$
$2 p-4 q=4$

Big Idea: When would it be an appropriate time to use elimination to solve a system of equations?

Unit 1.4 - Solving Systems of Inequalities by Graphing

Warm - Up:

Solve each system of equations by using substitution or elimination.
$8 x+3 y=-5$
$s+3 y=4$
$10 x+6 y=-13$
$s=1$

Learning Targets:

- I can solve systems of inequalities by graphing.
- I can determine the coordinates of the vertices of a region formed by the graph of a system of inequalities.

Quick Review of Inequalities

```
<-
>-
\leq-
\geq-
< OR >-
<OR \geq-
```

Example 1: Solve the system of inequalities by graphing.
$y \geq 2 x-3$
$y<-x+2$

Your turn:

Solve each system of inequalities by graphing.
$y \leq 3 x-3$
$y>x+1$

Example 2:

$y \geq-3 / 4 x+1$
$y \leq-3 / 4 x-2$

Your turn:
$y<1 / 2 x+2$
$y>1 / 2 x+4$

Find the coordinates of the vertices of the figure formed by $\mathbf{2 x - y} \geq \mathbf{- 1}, \mathbf{x + y} \leq 4$, and $x+4 y \geq 4$.

Your turn:
$x+2 y \geq 1$
$x+y \leq 3$
$-2 x+y \leq 3$

Big Idea:
Explain what it means to find the vertices of a system of inequalities.

Unit 1.5 - Linear Programming

Warm - Up:

Graph and find the vertices of the following system of inequalities.
$y \geq-4$

$$
y \leq 2 x+22
$$

$$
x+y \leq 6
$$

Learning Targets:

- I can determine the coordinates of the vertices of a region formed by the graph of a system of inequalities.
- I can find the maximum and minimum values of a function over a region.

Vocabulary

TERM:	DEFINITION:
Constraints	
Feasible Region	
Bounded	

Example 1:

Graph the following system of inequalities. Name the coordinates of the vertices of the
feasible region. Find the maximum and minimum values of the function $f(x, y)=3 x-2 y$ for this region.
$x \leq 5$
$y \leq 4$
$x+y \geq 2$

(x, y)	$3 x-2 y$	$f(x, y)$

Your Turn:
Graph the following system of inequalities.
Name the coordinates of the vertices of the feasible region. Find the maximum and minimum values of the function $f(x, y)$ $=4 x-3 y$ for this region.
$x \leq 4$
$y \leq 5$
$x+y \geq 6$

(x, y)	$4 x-3 y$	$f(x, y)$

Example 3: Graph the following system of inequalities. Name the coordinates of the vertices of the feasible region. Find the maximum and minimum values of the function $f(x, y)=3 x+$ y for this region.
$x \geq 1$
$y \geq 0$
$2 x+y \leq 6$

(x, y)	$3 x+y$	$f(x, y)$

Graph the following system of inequalities.
Name the coordinates of the vertices of the feasible region. Find the maximum and minimum values of the function $f(x, y)$
$=x+2 y$ for this region.
$x+3 y \leq 6$
$-x-3 y \leq 9$
$2 y-x \geq-6$

(x, y)	$\mathbf{x}+2 \mathbf{y}$	$\mathbf{f}(\mathbf{x}, \mathbf{y})$

Before your assignment...

Remember the steps involved:
1.
2.

Unit 1.6 - Linear Programming

Learning Targets:

- I can solve real-world problems using linear programming.

Steps to solving linear programming problems.

Key Concept Linear Programming Procedure

Step 1 Define the variables.
Step 2 Write a system of inequalities.
Step 3 Graph the system of inequalities.
Step 4 Find the coordinates of the vertices of the feasible region.
Step 5 Write a function to be maximized or minimized.
Step 6 Substitute the coordinates of the vertices into the function.
Step 7 Select the greatest or least result. Answer the problem.

Example 1:

Landscaping: A landscaping company has crews who mow lawns and prune shrubbery. The company schedules 1 hour for mowing jobs and 3 hours for pruning jobs. Each crew is scheduled for no more than 2 pruning jobs per day. Each crew's schedule is set up for a maximum of 9 hours per day. On the average, the charge for mowing a lawn is $\$ 40$ and the charge for pruning shrubbery is $\$ 120$. Find a combination of mowing lawns and pruning shrubs that will maximize the income the company receives per day from one of its crews.

Step 1: Define the variables.

$$
\begin{aligned}
& m= \\
& p=
\end{aligned}
$$

Step 2: Write a system of inequalities.

Step 3: Graph the system of inequalities.

Step 4: Find the coordinates of the vertices of the feasible region.

Step 5: Write a function to be maximized or minimized.

$$
f(m, p)=
$$

Step 6: Substitute the coordinates of the vertices into the function.

(m,p)	$\mathbf{4 0 m}+120 p$	$\mathbf{f (m , p)}$

Step 7: Select the greatest amount.

VETERINARY MEDICINE As a receptionist for a veterinarian, one of Dolores Alvarez's tasks is to schedule appointments. She allots 20 minutes for a routine office visit and 40 minutes for a surgery. The veterinarian cannot do more than 6 surgeries per day. The office has 7 hours available for appointments. If an office visit costs $\$ 55$ and most surgeries cost $\$ 125$, find a combination of office visits and surgeries that will maximize the income the veterinarian practice receives per day.
Step 1: Define the variables.

Step 2: Write a system of inequalities.

Step 3: Graph the system of inequalities.

Step 4: Find the coordinates of the vertices of the feasible region.

Step 5: Write a function to be maximized or minimized.

Step 6: Substitute the coordinates of the vertices into the function.

Step 7: Select the greatest or least result. (Answer the problem)

Your Turn:

Landscaping: A landscaping company has crews who rake leaves and mulch. The company schedules 2 hours for mulching jobs and 4 hours for raking jobs. Each crew is scheduled for no more than2 raking jobs per day. Each crew's schedule is set up for a maximum of 8 hours per day. On the average, the charge for raking a lawn is $\$ 50$ and the charge for mulching is $\$ 30$. Find a combination of raking leaves and mulching that will maximize the income the company receives per day from one of its crews.

Step 1: Define the variables.

Step 2: Write a system of inequalities.

Step 3: Graph the system of inequalities.

Step 4: Find the coordinates of the vertices of the feasible region.

Step 5: Write a function to be maximized or minimized.

Step 6: Substitute the coordinates of the vertices into the function.

Step 7: Select the greatest or least result. (Answer the problem)

