\qquad

Practice Test Unit 1: Solving Systems

Solve each system of equations by graphing.

1. $4 x+2 y=-6$ $2 x+y=8$

2. $2 x+y=-1$
$-3 x-y=3$

For \# 3 \& 4: Classify the system above as independent/dependent, consistent/inconsistent.
3. \qquad
\qquad

Solve each system of equations by using substitution.
Classify the system as independent/dependent, consistent/inconsistent.
5. $5 x-2 y=8$

$$
x-y=1
$$

5. \qquad
Type: \qquad
6. \qquad
Type: \qquad

Solve each system of equations by using elimination.
Classify the system as independent/dependent, consistent/inconsistent.
7. $2 x+3 y=5$

$$
3 x-2 y=1
$$

7. \qquad
Type: \qquad
8. \qquad
Type: \qquad

Solve each system of inequalities by graphing.
9. $\quad y>-1$
9. $y \geq-2 x+1$

$$
\begin{aligned}
& x-y \leq 4 \\
& 2 x+y<4
\end{aligned}
$$

10.

Use the system of inequalities: $x \leq 6,-4 x+3 y \leq 3, \quad x+3 \leq 3 y$
12.

Find the coordinates of the vertices
of the feasible region.

12. Vertices: \qquad
13. Find the maximum value of $f(x, y)=3 x+y$ for the feasible region.
14. Find the minimum value of $f(x, y)=3 x+y$ for the feasible region.

13. Maximum: \qquad at (,)
14. Minimum: \qquad at (,)

For Questions 15-17, use the following information. A college arena is selling tickets to students and to the general public. The arena seats 11,000 people. The college reserves at least 7000 tickets for students. Student tickets are $\$ 8$ each and the general public tickets are $\$ 32$ each.
(a) Make a table to organize the information.

	x	y	how much?

15. Write the system of inequalities: \qquad
\qquad
\qquad
(b) Graph the feasible region below (be sure to label your scales).

(c). Write the profit equation: \qquad
(d). List the vertices: \qquad
\qquad

16. How many general public tickets should the college sell to maximize revenue (amount collected)?
17. What is the maximum revenue? \qquad
18. A sports manufacturer makes baseball bats and tennis rackets. It cost $\$ 25$ to produce each baseball bat and it takes 15 hours to make it. It costs $\$ 60$ to produce each tennis racket and it takes 6 hours to make it. The store has at most $\$ 3000$ to spend and at most 600 hours to make them. It makes $\$ 45$ profit on each baseball bat and $\$ 75$ profit on each tennis racket. Find the number of each that the manufacturer should produce to maximize profits.
(a) Make a table to organize the information.

	x	y	how much?

Write the system of inequalities: \qquad
\qquad
(b) Graph the feasible region below (be sure to label your scales).

(c). Write the profit equation: \qquad
(d). List the vertices: \qquad

Maximum profit of \$ \qquad
Selling: \qquad bats and \qquad tennis rackets

