Chapter 1 Review

You should understand and recognize the definition of the following VOCABULARY words.

Lesson 1.1

- A. Point
- B. Collinear Points
- C. Plane
- D. Coplanar

Lesson 1.2

- E. Line
- F. Line Segment
- G. Congruent

Lesson 1.3

- H. Distance
- I. Midpoint

Lesson 1.4

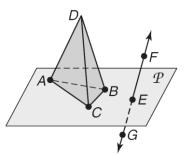
- J. Ray
- K. Angle
- L. Acute angle
- M. Right angle
- N. Obtuse angle

Lesson 1.5

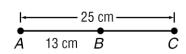
- O. Complementary Angles
- P. Supplementary Angles
- Q. Linear Pair
- R. Vertical Angles
- S. Adjacent Angles
- T. Perpendicular Lines

Lesson 1.6

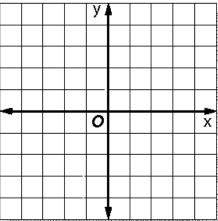
- U. Concave
- V. Convex
- Q. Polygon
- X. Regular Polygon
- Y. Perimeter


Lesson 1.7

- Z. Bisector
- AA. Angle Bisector
- BB. Perpendicular Bisector

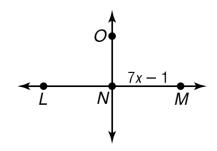

Show all work for the following questions.

For Questions 1-4, use the figure at the right.

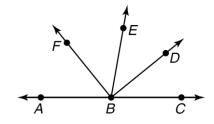

- 1. Name three collinear points.
- 2. Name two points in plane \mathscr{P} .

- 3. Name the intersection of plane \mathscr{P} and the plane that contains points B, C, and D.
 - \mathbf{A} . point B
- **B.** \overline{BD}
- C. \overrightarrow{BC}
- **D.** $\triangle BCD$
- 4. Give another name for \overrightarrow{FE} .
- 5. Find the length of \overline{BC} .

6. a. Use the coordinates to find the length of segments AB and CD.


- b. If you wanted to make segment AB the same length as CD, where could you move point A?
- 7. a. Given A(-4, 7) and S(5, 3), find the coordinates of the midpoint of \overline{AS} .
 - b. What quadrant does the midpoint lie in?

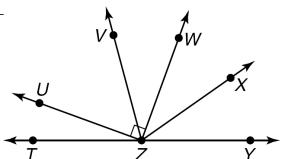
In Questions 8 and 9, you will be dealing with bisectors. You will need to consider the following: What does it mean for an angle to be <u>bisected</u>? What happens if a segment is <u>bisected</u>?


8. Find the <u>length of \overline{LM} </u> if \overrightarrow{ON} is the **bisector** of \overline{LM} and LN = 3x + 2.

Hint: Label LN first, then think about how

LN and NM must be related if \overrightarrow{ON} bisects \overline{LM} .

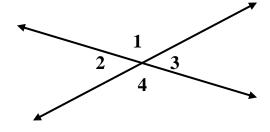
9. In the figure, \overrightarrow{BA} and \overrightarrow{BC} are opposite rays and \overrightarrow{BD} **bisects** $\angle EBC$. If $m\angle EBD = 4x + 16$ and $m\angle DBC = 6x + 4$, find $m\angle EBD$.

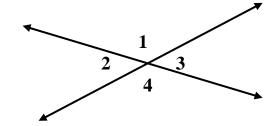

10. T is between R and S. Find x and RT if RS = 8x - 3, RT = 3x + 5, and TS = 27.

x = _____

RT = _____

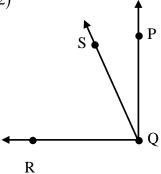
For Questions 11 and 12, refer to the figure at the right.


- 11. a) Measure $\angle YZU$ to the nearest degree.
 - b) Classify $\angle YZU$ as acute, right, or obtuse.
 - c) $\angle YZU$ is a **linear pair** with what angle?
 - d) <u>Calculate</u> the measure of the angle in 11c.


- 12. a) Measure $\angle TZV$ to the nearest degree.
 - b) Classify $\angle TZV$ as acute, right, or obtuse.
 - c) \(\angle TZV\) is **adjacent** with \(\frac{\text{what angle}}{\text{angle}}\)?

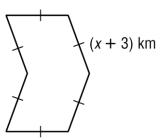
For Questions 13 and 14, refer the figure at the right.

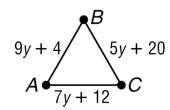
- 13. a) Name the angle pair formed by ∠1 and ∠3.
 - b) If $m\angle 1 = 4x + 2$ and $m\angle 3 = 2x 5$, find x.


- c) Find $m \angle 1$ _____. Find $m \angle 3$ _____
- 14. a) Name the <u>angle pair</u> formed by $\angle 2$ and $\angle 3$.
 - b) If $m\angle 2 = 7x 8$ and $m\angle 3 = 5x + 14$, find x.

c) Find $m \angle 2$ _____. Find $m \angle 3$ _____

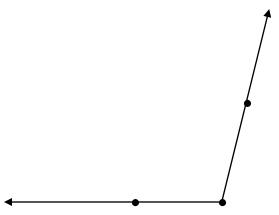
15. Suppose $\overrightarrow{QP} \perp \overrightarrow{QR}$, $m \angle PQS = (3x)^{\circ}$ and $m \angle SQR = (8x + 2)^{\circ}$


- a) Find *x*. _____
- b) Find $m \angle PQS$.
- c) Find $m \angle SQR$.


For Questions 16 and 17, use the figure at the right.

16. Which describes this figure?

- A. hexagon, concave, not regular
- B. pentagon, concave, regular
- C. hexagon, convex, not regular
- D. not a polygon
- 17. What is x for a perimeter of 108 kilometers?



18. For what value of y is $\triangle ABC$ a regular triangle?

19. Label the angle below $\angle AXB$.

Construct an **ANGLE BISECTOR** and <u>label it</u> \overrightarrow{XR} .

20. Label the segment below \overline{VM} .

Construct a **PERPENDICULAR BISECTOR**.

