2.1 Inductive Reasoning and Conjecture

	I can make an educated guess based on inductive reasoning. I can find counterexamples. I can use algebra to write two-column proofs.

| c. Given: $\overline{D E} \perp \overline{E F}$.
 Conjecture: $\angle D E F$ is a right angle. | d. Given: $\angle A B C$ and $\angle D E F$ are
 supplementary.
 Conjecture: $\angle A B C$ and $\angle D E F$ form a linear
 pair. |
| :--- | :--- | :--- |

	Term	Definition
	Proof	- a \qquad in which each statement you make is \qquad by a statement that is accepted to be

Algebraic Statements Accepted to be True

Properties of Equality for Real Numbers		
Name of Property	Property	Example
Reflexive Property	For any number a,	
Symmetric Property	For all numbers a and b,	
Transitive Property	For all numbers a, b, and c,	
Addition Property	For all numbers a, b, and c,	
Subtraction	For all numbers a, b, and c,	
Property		

Geometry A Unit 2: Algebraic and Geometric Proof

Properties of Equality for Real Numbers			
	me of Property	Property	Example
Multiplication Property		For all numbers a, b, and c,	
Division Property		For all numbers a, b, and c,	
Substitution Property		For all numbers a and b,	
Distributive Property		For all numbers a, b, and c,	
	Two-Column Pr - a format use - contains 2 col	of to prove conjectures and theo umns: \qquad an ement:	

Writing Two-Column Proofs

Statements	Reasons (Justifications)
1.	1.
2.	2.
3.	3.

Tips:

- Block 1 is ALWAYS your given statement!
- Never use the word PROVE to end your proof.

	Example 3: Given: $3 x+5=17$ Prove: $x=4$	
	Statements	Reasons

2.2 Geometric Proof with Congruence

-	- I can write proofs involving segment congruence. - I can write proofs involving angle congruence.

Geometric Properties for Segments and Angles		
Name of Property	Property	Picture
Reflexive Property		
Symmetric Property		
Transitive Property		
Reflexive Property		
Symmetric Property		$\mathrm{H}^{\text {H }}$ (${ }^{\text {a }}$
Transitive Property		$\xrightarrow{\longrightarrow} \xrightarrow{\sim} \xrightarrow{2}$

Geometry A Unit 2: Algebraic and Geometric Proof

	Example 1: Given: $m \angle 1=m \angle 2$ and $m \angle 2=m \angle 3$ Prove: $m \angle 1=m \angle 3$	
	Statements	Reasons

	Term	Definition
	Theorem	- a conjecture proven to be true - can be used in proofs

	REVIEW: Definition of an Angle Bisector a ray that \qquad an angle into \qquad If $\overrightarrow{P N}$ bisects $\angle M P R$ then $\angle M P N \cong \angle N P R$.	

Geometry A Unit 2: Algebraic and Geometric Proof

2.3 Geometric Proofs with Addition

$\begin{aligned} & \mathscr{0} \\ & 0 \\ & \tilde{0} \\ & \overrightarrow{0} \end{aligned}$	REVIEW: Angle Addition Postulate - If \boldsymbol{R} is in the interior of $\angle P Q S$, then $m \angle P Q R+m \angle R Q S=$ \qquad	
$\begin{aligned} & \text { 局 } \\ & \text { on } \\ & 0 \\ & 0 \end{aligned}$	Supplement Theorem If two angles form a then they are supplementary angles. $(\mathrm{Sum}=$ \qquad	
	Complement Theorem If the noncommon sides of two adjacent angles form a \qquad angle, then the angles are complementary angles. (Sum $=$ \qquad	

Geometry A Unit 2: Algebraic and Geometric Proof

