2.1 Inductive Reasoning and Conjecture

Targets

- I can make an educated guess based on inductive reasoning.
 I can find counterexamples.
 I can use algebra to write two-column proofs.

Voc	Term		Definition	
Vocabulary	Inductive Reasoning	• reasoning that uses several specific examples to arrive at a reasonable generalization or prediction		
	<u>Conjecture</u>			
Instruction	<i>Example 1:</i> Make a conjecture given information: ∠ <i>ABC</i> and ∠ <i>DBE</i> are verti		Your turn:Make a conjecture based on the given information: Point P is the midpoint of \overline{NQ} .	
Vocab	<u>Counterexample</u>			
Instruction	<i>Example 2:</i> Determine whether each conject	ture is true or false. Give a counterexample for any false conjecture.		
tion	a. Conjecture: The product of integers is odd.	two positive	 b. Given: ∠1 and ∠2 are adjacent angles. Conjecture: ∠1 and ∠2 are complementary. 	

Geometry A Unit 2: Algebraic and Geometric Proof

	2 0
c. Given: $\overline{DE} \perp \overline{EF}$. Conjecture: $\angle DEF$ is a right angle.	d. Given: $\angle ABC$ and $\angle DEF$ are supplementary. Conjecture: $\angle ABC$ and $\angle DEF$ form a linear pair.

Voca	Term	Definition	
abulary	<u>Proof</u>	• a in which each statement you make is by a statement that is accepted to be 	

Algebraic Statements Accepted to be True

Properties of Equality for Real Numbers				
Name of Property	Property	Example		
Reflexive Property	For any number <i>a</i> ,			
Symmetric Property	For all numbers <i>a</i> and <i>b</i> ,			
Transitive Property	For all numbers <i>a</i> , <i>b</i> , and <i>c</i> ,			
Addition Property	For all numbers <i>a</i> , <i>b</i> , and <i>c</i> ,			
Subtraction Property	For all numbers <i>a</i> , <i>b</i> , and <i>c</i> ,			

Properties of Equality for Real Numbers				
Name of Property	Property	Example		
Multiplication Property	For all numbers a, b , and c ,			
Division Property	For all numbers <i>a</i> , <i>b</i> , and <i>c</i> ,			
Substitution Property	For all numbers <i>a</i> and <i>b</i> ,			
Distributive Property	For all numbers <i>a</i> , <i>b</i> , and <i>c</i> ,			
Yordbury Two-Column Proof • a format used to prove conjectures and theorems • contains 2 columns: and • statement: • reason:				
Writing Two-Column P	roofs			

Statements	Reasons (Justifications)
1.	1.
2.	2.
3.	3.
4.	4.

Tips:

- Block 1 is ALWAYS your given statement!
- Never use the word PROVE to end your proof.

In	<i>Example 3:</i> Given: $3x + 5 = 17$	
Instruction	Given: $3x + 5 = 17$	
ıcti	Prove: $x = 4$	
on		
	Statements	Reasons

Insti	<i>Example 4:</i> Given: $6x - 3 = 4x + 1$	
Instruction	Prove: $x = 2$	
	Statements	Reasons

2.2 Geometric Proof with Congruence Targets

- I can write proofs involving segment congruence.
 I can write proofs involving angle congruence.

Geometric Properties for Segments and Angles				
Name of Property	Property		ture	
Reflexive Property		• A	• B	
Symmetric Property		A B	C D	
Transitive Property		$A \qquad B \qquad C$	D E F	
Reflexive Property			/	
Symmetric Property		\int_{1}	\int_{2}	
Transitive Property				

Voc	Term	Definition
abulary	<u>Theorem</u>	 a conjecture proven to be true can be used in proofs

In	Example 2:	
Instruction	Given : <i>B</i> is the midpoint of \overline{AC}	• • •
ıcti	C is the midpoint of \overline{BD} A	B C D
on	Prove: $\overline{AB} \cong \overline{CD}$	
	Statements	Reasons
	1. <i>B</i> is the midpoint of \overline{AC}	
	2. <i>C</i> is the midpoint of <i>BD</i>	
	2	
	3.	
	4.	
	5.	

Defin	REVIEW: Definition of an Angle Bisector	M. I.
Definition/Theorem	• a ray that an angle into	• N
neorem	• If \overrightarrow{PN} bisects $\angle MPR$ then $\angle MPN \cong \angle NPR$.	P R
Theorem	Vertical Angles Theorem	2
em	• If two angles are vertical angles, $\frac{1}{4}$	3
	then they are	

Instruction	<i>Example 3:</i> Given: \overrightarrow{FB} bisects $\angle AFC$ \overrightarrow{FD} bisects $\angle CFE$ $\angle 1 \cong \angle 3$ Prove: $\angle 2 \cong \angle 4$	$ \begin{array}{c} $	
	Statements	Reasons	
	1. \overrightarrow{FB} bisects $\angle AFC$		
	2. \overrightarrow{FD} bisects $\angle CFE$		
	3. $\angle 1 \cong \angle 3$		
	4.		
	5.		
	6.		
	7.		

2.3 Geometric Proofs with Addition

Targets	 I can write proofs involving segment addition. I can write proofs involving angle addition. 				
Postulate	<u>REVIEW: Segment Addition Postulate</u> A B C				
	• If B is between A and C, then $AB + BC = AC$				
	part part whole				
Instruction	Example 1: Complete the following proof.Given: B is between A and C $BC = DE$ Prove: $AB + DE = AC$ $A = DE$				
ion	StatementsReasons1. B is between A and C				
	2. BC = DE				
	3. AB + BC = AC				
	4. AB + DE = AC				
Postulate	REVIEW: Angle Addition PostulateP• If R is in the interior of $\angle PQS$, then $m\angle PQR + m\angle RQS = $ R				
Theorems	Supplement Theorem If two angles form a, then they are supplementary angles. (Sum =)				
	Complement Theorem $R \downarrow W$ If the noncommon sides of two adjacent angles $R \downarrow W$ form a angle, then the angles are complementary $2 \downarrow 1$ angles. (Sum =) $S \downarrow 1$				

Geometry A Unit 2: Algebraic and Geometric Proof

