Algebra 2A

Lesson: 2.1

Graphing Quadratic Functions

s:	
Picture/Formula	
Standard Form:	
	Picture/Formula Standard Form:

Analyzing Graphs of Quadratic Functions

Term	Picture/Formula	In your own words:
Quadratic Function	Vertex Form:	
Vertex Max/Min		
c-coordinate of vertex Axis of		
Ve	ertex Form	Standard Form

Quadratic Functions Exploration

Introduction:

The function $y = ax^2 + bx + c$ is a quadratic function. In this activity, you will examine how the shape of the parabola changes as the values of *a*, *b*, and *c* are modified. You will also determine how this equation will help you find *x*- and *y*- intercepts on the graph.

Activity

The Meaning of *a*, *b*, and *c*

- 1. Graph $y = x^2$ on your calculator. Observe how the graph changes as you vary *a* (*The constant attached to the front of x*²). Try changing *a* to negative as well.
 - a. How does the value of *a* affect the direction the parabola opens?
 - b. What happens to the graph as *a* moves closer to zero?
 - c. What happens to the graph as *a* moves away from zero?
 - d. What happens to the graph when a = 0? Why?
 - e. Which of the following parabolas will appear wider: $y = -2x^2 + x 5$ or $y = 4x^2 2x + 2$? Why?
 - f. Which of the following parabolas will open downward: $y = -2x^2 + x 5$ or $y = 4x^2 2x + 2$? Why?
- 2. Set a = 1 and c = 0. Observe how the graph changes as you vary b.

Remember: ax^2+bx+c

- a. How do changes in the value of *b* affect the shape of the parabola?
- 3. Set a = 1 and b = 0. Observe how the graph changes as you vary c. How do changes in the value of c affect the parabola?

***Vertex Form** is another way to display a quadratic function:

 $y = a(x - h)^2 + k$

- 1. Graph $\mathbf{y} = (\mathbf{x} 2)^2 + 1$ on your calculator. Observe how the graph changes as you vary *a*. Try changing *a* to negative as well.
 - a. How does the value of *a* affect the direction the parabola opens?
 - b. What happens to the graph as you change the value of *h*? Try at least 3 equations with different *h* values.
 - c. What do you notice about the h value as it relates to the x-value of your vertex?
 - d. What happens to the graph as you change the value of *k*? Try at least 3 equations with different *k* values.
 - e. What do you notice about the *k* value as it relates to the y-value of the vertex?
- 2. Given the equation $y = -3(x + 2)^2 5$, determine the direction of opening and the vertex.
 - a. Direction of opening?
 - b. Vertex?
 - c. Verify your answers by graphing the equation.

The Vertex and Axis of Symmetry

Recall that the *x*-coordinate of the vertex can be calculated using the formula $\frac{-b}{2a}$. Start with the equation: $y = x^2 + 3x + 5$

- a. What happens to the graph when a = 0? Does the graph have a vertex?
- b. Calculate $\frac{-b}{2a}$ when a = 0.

- 3. For what values of *a* is the vertex a minimum?
- 4. For what values of *a* is the vertex a maximum?
- 5. Set a = 1 and vary the values of b and c.
 - a. For which values of *b* will the vertex lie on the *y* axis?
 - b. How does varying *c* affect the coordinates of the vertex? Which coordinates of the vertex (*x* or *y* or both?) change when you vary *c*?

The Intercepts of the parabola

6. Use your calculator to graph each equation below. Record *a*, *b*, and *c* and calculate $b^2 - 4ac$ for each equation. Then record the number of *x*-intercepts the graph has.

Equation	а	b	с	b^2-4ac	# of x-intercepts
$y = x^2 + 4x + 2$					
$y = x^2 + 4x + 3$					
$y = x^2 + 4x + 4$					
$y = x^2 + 4x + 5$					
$y = x^2 + 4x + 6$					

- 7. Complete each statement below with the number of x-intercepts:
 - a. When $b^2 4ac$ positive, the graph has ______ *x*-intercepts.
 - b. When $b^2 4ac$ is zero, the graph has ______ x-intercepts.
 - c. When $b^2 4ac$ is negative, the graph has ______ x-intercepts.
- 8. Where have you seen $b^2 4ac$ before?

l n	Example 1: Graph $f(x) = (x - 3)$ Direction of opening: Up / down ?) 2	Direction of openi	ing: Up / down ?	
S 4	Vertex: Max	c / Min ?	Vertex:	_	Max / Min ?
r	Axis of symmetry:		Axis of symmetry:	:	-
C t i	x		x f(x)		
o n		₹			×
	\downarrow			Ļ	
	↓ <i>Your Turn 1:</i> Graph <i>f(x)</i> = 4(<i>x</i> +	3) ² – 2	Your Turn 2: f(x	$\frac{1}{(x)^2 = -2 (x + 1)^2}$	+ 4
Y	<i>Your Turn 1:</i> Graph $f(x) = 4(x + Direction of opening: Up / down ?$	3) ² – 2	<i>Your Turn 2: f(x</i> Direction of openi	↓ x) = -2 (x + 1) ² ing: Up / down ?	+ 4
Y	↓ <i>Your Turn 1:</i> Graph <i>f(x)</i> = 4(<i>x</i> + Direction of opening: Up / down ? Vertex:	3)² – 2 Max / Min ?	<i>Your Turn 2: f(x</i> Direction of openi Vertex:	↓ () = -2 (x + 1) ² ing: Up / down ?	+ 4 Max / Min ?
You	↓ Your Turn 1: Graph f(x) = 4(x + Direction of opening: Up / down ? Vertex: Axis of symmetry:	3)² – 2 Max / Min ?	<i>Your Turn 2: f(x</i> Direction of openi Vertex: Axis of symmetry:	↓ x) = -2 (x + 1) ² ing: Up / down ? 	+ 4 Max / Min ?
Y o u r T	Your Turn 1: Graph $f(x) = 4(x + Direction of opening: Up / down ? Vertex: Axis of symmetry: x f(x) $	3)² – 2 Max / Min ?	Your Turn 2: f(x) Direction of openi Vertex: Axis of symmetry: x f(x)	↓ () = -2 (x + 1) ² ing: Up / down ? 	+ 4 Max / Min ?

v	Your Turn 3:				
T O	Write an equation for the parabola with the given vertex (3, -1), that passes through the point (2, 0).				
u r	$y = a(x - h)^2 + k$ $y = ax^2 + bx + c$				
T					
r					
	Use your Graphing Calculator to solve the following problems: Word Problem 1 : An object is propelled upward from the top of a 500 foot building. The path that the object takes as it falls to the ground can be modeled by $h = -16t^2 + 100t + 500$ where t is the time (in seconds) and h is the corresponding height of the object. The velocity of the object is $v = -32t + 100$ where t is seconds and v is velocity of the object				
	y =				
	How high does the object go?				
	When is the object 550 ft high?				
	With what velocity does the object hit the ground?				

	Word problem 2 : An astronaut standing on the surface of the moon throws a rock into the air with an initial velocity of 27 feet per second. The astronaut's hand is 6 feet above the surface of the moon. The height of the rock is given by $h=-2.7t^2+27t+6$.
n	<i>y</i> =
s t	How many seconds is the rock in the air?
r	How high did the rock go?
u	
C	
t	
i	
0	
n	

	Learning Targets	:	
	Term	Picture/Formula	In your own words:
V 0	Quadratic Equation		
C a b	Zeros		
u I a	Roots		
ľ	Cases:		
y			
	two real roots	one real root	no real roots

