\qquad Hour: \qquad
Algebra 2A
Lesson: 2.1

Graphing Quadratic Functions

	Learning Targets:		
	Term	Picture/Formula	In your own words:
	Quadratic Function	Standard Form:	
	Parabola		
	Vertex Max/Min		
$\begin{aligned} & 2 \\ & \mathbf{y} \\ & y \end{aligned}$	x-coordinate of vertex		
	Axis of symmetry		
	y-intercept		

Analyzing Graphs of Quadratic Functions

Quadratic Functions Exploration

Introduction:

The function $y=a x^{2}+b x+c$ is a quadratic function. In this activity, you will examine how the shape of the parabola changes as the values of a, b, and c are modified. You will also determine how this equation will help you find x - and y-intercepts on the graph.

Activity

The Meaning of a, b, and c

1. Graph $y=x^{2}$ on your calculator. Observe how the graph changes as you vary a (The constant attached to the front of x^{2}). Try changing a to negative as well.
a. How does the value of a affect the direction the parabola opens?
b. What happens to the graph as a moves closer to zero?
c. What happens to the graph as a moves away from zero?
d. What happens to the graph when $a=0$? Why?
e. Which of the following parabolas will appear wider: $y=-2 x^{2}+x-5$ or $y=4 x^{2}-2 x+2$? Why?
f. Which of the following parabolas will open downward: $y=-2 x^{2}+x-5$ or $y=4 x^{2}-2 x+2$? Why?
2. Set $a=1$ and $c=0$. Observe how the graph changes as you vary b.

Remember: $a x^{2}+b x+c$

a. How do changes in the value of b affect the shape of the parabola?
3. Set $a=1$ and $b=0$. Observe how the graph changes as you vary c. How do changes in the value of c affect the parabola?
*Vertex Form is another way to display a quadratic function: $\quad \boldsymbol{y}=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}$

1. Graph $\mathbf{y}=(\mathbf{x}-\mathbf{2})^{\mathbf{2}}+\mathbf{1}$ on your calculator. Observe how the graph changes as you vary a. Try changing a to negative as well.
a. How does the value of a affect the direction the parabola opens?
b. What happens to the graph as you change the value of h ? Try at least 3 equations with different h values.
c. What do you notice about the h value as it relates to the x -value of your vertex?
d. What happens to the graph as you change the value of k ? Try at least 3 equations with different k values.
e. What do you notice about the k value as it relates to the y-value of the vertex?
2. Given the equation $y=-3(x+2)^{2}-5$, determine the direction of opening and the vertex.
a. Direction of opening?
b. Vertex?
c. Verify your answers by graphing the equation.

The Vertex and Axis of Symmetry

Recall that the x-coordinate of the vertex can be calculated using the formula $\frac{-b}{2 a}$.
Start with the equation: $y=x^{2}+3 x+5$
a. What happens to the graph when $a=0$? Does the graph have a vertex?
b. Calculate $\frac{-b}{2 a}$ when $a=0$.
3. For what values of a is the vertex a minimum?
4. For what values of a is the vertex a maximum?
5. Set $a=1$ and vary the values of b and c.
a. For which values of b will the vertex lie on the y-axis?
b. How does varying c affect the coordinates of the vertex? Which coordinates of the vertex (x or y or both?) change when you vary c ?

The Intercepts of the parabola

6. Use your calculator to graph each equation below. Record a, b, and c and calculate $b^{2}-4 a c$ for each equation. Then record the number of x-intercepts the graph has.

Equation	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	$\boldsymbol{b}^{\mathbf{2}}-\mathbf{4} \boldsymbol{a} \boldsymbol{c}$	\# of \boldsymbol{x}-intercepts
$y=x^{2}+4 x+2$					
$y=x^{2}+4 x+3$					
$y=x^{2}+4 x+4$					
$y=x^{2}+4 x+5$					
$y=x^{2}+4 x+6$					

7. Complete each statement below with the number of x-intercepts:
a. When $b^{2}-4 a c$ positive, the graph has \qquad x-intercepts.
b. When $b^{2}-4 a c$ is zero, the graph has \qquad x-intercepts.
c. When $b^{2}-4 a c$ is negative, the graph has \qquad x-intercepts.
8. Where have you seen $b^{2}-4 a c$ before?

Example 3:	
Write an equation for the parabola with the given vertex that passes through the given point.	
$y=a(x-h)^{2}+k$	$y=a x^{2}+b x+c$

Word problem 2: An astronaut standing on the surface of the moon throws a rock into the air
with an initial velocity of 27 feet per second. The astronaut's hand is 6 feet above the surface
of the moon. The height of the rock is given by $h=-2.7 t^{2}+27 t+6$.
How many seconds is the rock in the air?
How the rock go?

Algebra 2A

Lesson: 2.3
Solving Quadratic Equations by Graphing

	Learning Targets:		
	Term	Picture/Formula	In your own words:
	Quadratic Equation		
	Zeros		
	Roots		
	Cases:		
	 two real roots	 one real root	 no real roots

	Part 2 : Approximate roots Example 2: Solve $x^{2}-2 x-2=0$ by graphing. Vertex: \qquad Approximate roots: \qquad
$\begin{aligned} & Y \\ & \mathbf{Y} \\ & \mathbf{Y} \\ & \mathbf{Y} \\ & \mathbf{T} \\ & \mathbf{I} \\ & \mathbf{I} \end{aligned}$	Your Turn 2: Solve $x^{2}-4 x+4=0$ by graphing. Vertex: \qquad Approximate roots: \qquad

$\begin{aligned} & 1 \\ & m \\ & 8 \end{aligned}$	Use a quadratic equation and its graph to find two real numbers that satisfy each situation, or show that no such numbers exist. Their sum is 4 , and their product is -12 .
1 $ש$ e t 1 0	

