2.1

For Questions 1 and 2, find the *y*-intercept, axis of symmetry, and vertex of the parabola.

1. $f(x) = -x^2 - 2x + 2$	2. $f(x) = 2x^2 - 4x + 3$
y-intercept:	y-intercept:
axis of symmetry:	axis of symmetry:
vertex:	vertex:

For Questions 3 and 4, determine whether each function has a maximum or minimum value. Then find the maximum or minimum value of each function.

- 4. $f(x) = -6x^2 + 12x + 21$ $f(x) = 3x^2 - 3x + 1$ 3.
- The height h of a baseball t seconds after being hit is given by $h(t) = -16t^2 + 80t + 3$. 5.
 - a) What is the maximum height that the baseball reaches?

5a.____

b) When does this occur?

5b.

6 .	Which function is graphed?
	A. $f(x) = x^2 - 2x - 3$
	B. $f(x) = x^2 + 2x - 3$
	C. $f(x) = x^2 + x - 3$
	D. $f(x) = (x - 3)^2$

			f(x)		
				L		-
		0				X
1						
	$\mathbf{\mathcal{L}}$					
			L.			

<u>2.2</u>

For Questions 7-10, identify the vertex, axis of symmetry, and the direction of opening.

7. $y = -6(x+2)^2 - 1$	8. $y = 3(x+5)^2$
Vertex:	Vertex:
Axis:	Axis:
Direction:	Direction:
9. $y = 3x^2 - 6x + 5$	10. $y = 2x^2 + 16x + 29$
Vertex Form	Vertex Form
Equation:	Equation:
Vertex:	Vertex:
Axis:	Axis:
Direction:	Direction:

11. Write an equation for the parabola with vertex at (-5, 7) and passes through the point (-3, -1).

<u>2.3</u>

12. Use the related graph for $f(x) = x^2 + x - 6$ to determine the solutions of $x^2 + x - 6 = 0$.

13. Use a quadratic equation to find two real numbers that satisfy the situation, or show that no such numbers exist. Their sum is 5 and their product is -36.

For Questions 14 and 15, solve each equation by <u>Graphing</u>. If exact roots cannot be found, use a graphing calculator to approximate them.

