\qquad Hr. \qquad
2. 1

For Questions 1 and 2, find the y-intercept, axis of symmetry, and vertex of the parabola.

1. $f(x)=-x^{2}-2 x+2$
2. $f(x)=2 x^{2}-4 x+3$
y-intercept: \qquad
axis of symmetry: \qquad
y-intercept: \qquad
vertex: \qquad vertex: \qquad

For Questions 3 and 4, determine whether each function has a maximum or minimum value. Then find the maximum or minimum value of each function.
3. $f(x)=3 x^{2}-3 x+1$
4. $f(x)=-6 x^{2}+12 x+21$
5. The height h of a baseball t seconds after being hit is given by $\boldsymbol{h}(\boldsymbol{t})=\mathbf{- 1 6} \boldsymbol{t}^{\mathbf{2}}+\mathbf{8 0 t}+\mathbf{3}$.
a) What is the maximum height that the baseball reaches?

5a. \qquad
b) When does this occur?

5b. \qquad
6. Which function is graphed?
A. $f(x)=x^{2}-2 x-3$
B. $f(x)=x^{2}+2 x-3$
C. $f(x)=x^{2}+x-3$
D. $f(x)=(x-3)^{2}$

2.2

For Questions 7-10, identify the vertex, axis of symmetry, and the direction of opening.
7. $y=-6(x+2)^{2}-1$
8. $y=3(x+5)^{2}$

Vertex: \qquad
Axis: \qquad
Direction: \qquad
9. $y=3 x^{2}-6 x+5$

Vertex Form
Equation:
Vertex: \qquad
Axis: \qquad
Direction: \qquad
10. $y=2 x^{2}+16 x+29$

Vertex Form
Equation: \qquad
Vertex: \qquad
Axis: \qquad
Direction: \qquad
11. Write an equation for the parabola with vertex at $(-5,7)$ and passes through the point $(-3,-1)$.

2.3

12. Use the related graph for $f(x)=x^{2}+x-6$ to determine the solutions of $x^{2}+x-6=0$.

13. Use a quadratic equation to find two real numbers that satisfy the situation, or show that no such numbers exist. Their sum is 5 and their product is -36 .

For Questions 14 and 15, solve each equation by Graphing. If exact roots cannot be found, use a graphing calculator to approximate them.
14. $x^{2}+2 x-8=0$

x	y

Solution(s): \qquad
15. $2 x^{2}-12 x+17=0$

Solution(s): \qquad

