3.1 Parallel Lines and Transversals

	Example 1: Refer to the rectangular prism at the right. a. How many planes are in the prism? \qquad b. Name a plane parallel to plane $A B E$. c. Name a plane parallel to plane $B C G$. d. Name the intersection of plane $A B C$ and plane $B F \dot{G}$. \qquad e. Name the intersection of plane $E H D$ and plane $A D C$. \qquad f. Name the intersection of plane $H D C$ and plane $B C G$. \qquad g. Name all the segments that intersect $\overline{A B}$. h. Name all the segments parallel to $\overline{A B}$. i. Name all the segments skew to $\overline{A B}$.

	Term	Definition	Picture
	Transversal		

TRANSVERSALS and ANGLES

	Name	Angles in the Figure
	Interior Angles	
	Exterior Angles	

	Name	Angles in the Figure
	$\frac{\text { Consecutive }}{\text { Interior Angles }}$ $\frac{\text { ("Same Side" }}{\text { Interior Angles) }}$	
	Consecutive Exterior Angles ("Same Side" Exterior Angles)	

	Name	Angles in the Figure
	Alternate Interior Angles	
	Alternate Exterior Angles	
	Corresponding Angles	

	Example 2: Refer to the figure below. Identify each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles. a. $\quad \angle 3$ and $\angle 10$ b. $\quad \angle 2$ and $\angle 12$ c. $\quad \angle 8$ and $\angle 14$ d. $\quad \angle 8$ and $\angle 13$ e. $\angle 1$ and $\angle 9$ f. $\quad \angle 8$ and $\angle 16$ g. $\angle 6$ and $\angle 16$ h. $\quad \angle 3$ and $\angle 11$ i. $\angle 7$ and $\angle 13$
	Your Turn: 1. Identify each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles. a. $\angle 11$ and $\angle 13$ b. $\angle 2$ and $\angle 10$ c. $\angle 4$ and $\angle 6$ d. $\angle 2$ and $\angle 5$ e. $\angle 5$ and $\angle 15$ f. $\angle 10$ and $\angle 16$ g. $\angle 9$ and $\angle 13$ 2. a. Name the intersection of plane $H E F$ and plane $F B C$. \qquad b. Name all the segments that intersect $\overline{C G}$. c. Name all the segments parallel to $\overline{C G}$. d. Name all the segments skew to $\overline{C G}$.

3.2 Angles and Parallel Lines

器	\bigcirc	I can use the properties of parallel lines to determine if angles are congruent. I can use algebra to find angle measures.

	Term	Definition	Picture
	Parallel Lines	- Coplanar (on the same plane) lines that do not intersect	
	Parallel Lines Postulates and Theorems for Angle Pairs		
	Corresponding Angles Postulate	- If two parallel lines are cut by a transversal, then each pair of corresponding angles is \qquad .	
	Alternate Interior Angles Theorem	- If two parallel lines are cut by a transversal, then each pair of alternate interior angles is \qquad .	
$\begin{aligned} & \text { 灵 } \\ & 0 \\ & \hat{E} \\ & \hat{E} \\ & 0 \end{aligned}$	Parallel Lines Postulates and Theorems for Angle Pairs		
	Alternate Exterior Angles Theorem	- If two parallel lines are cut by a transversal, then each pair of alternate exterior angles is \qquad .	
	$\frac{\text { Consecutive Interior }}{\text { Angles Theorem }}$	- If two parallel lines are cut by a transversal, then each pair of consecutive interior angles is \qquad .	

気	Example 1: Suppose $\ell \\| m$ and $m \\| n$. If $m \angle 1=125^{\circ}$, find the following angle measures. a. $m \angle 2=$ \qquad e. $m \angle 8=$ \qquad i. $m \angle 7=$ \qquad b. $m \angle 3=$ \qquad f. $m \angle 9=$ \qquad j. $m \angle 12=$ \qquad c. $m \angle 4=$ \qquad g. $m \angle 10=$ \qquad k. $m \angle 6=$ \qquad d. $m \angle 5=$ h. $m \angle 11=$
	Example 2: If $m \angle 2=92^{\circ}$ and $m \angle 12=74^{\circ}$, find the following angle measures. a. $m \angle 10=$ \qquad e. $m \angle 11=$ \qquad b. $m \angle 8=$ \qquad f. $m \angle 13=$ \qquad c. $m \angle 9=$ \qquad g. $m \angle 14=$ \qquad d. $m \angle 5=$
	Your Turn: If $m \angle 2=78^{\circ}$, find the following angle measures. a. $m \angle 1=$ \qquad d. $m \angle 6=$ \qquad g. $m \angle 5=$ \qquad b. $m \angle 3=$ \qquad e. $m \angle 7=$ \qquad c. $m \angle 4=$ \qquad f. $m \angle 8=$ \qquad
	Example 3: If $m \angle 5=2 x-10$ and $m \angle 6=x+15$, find the value of x. Then find $m \angle 5$ and $m \angle 6$.

3.3 Slopes of Lines

-	I can find slopes of lines. I can use slope to identify parallel lines. I can use slope to identify perpendicular lines.		
	Term	Definition	Picture
	Slope		

	Term	Definition	Picture
	Parallel Lines Perpendicular Lines		

| Example 3: |
| :--- | :--- |
| Determine whether line $\stackrel{\leftrightarrow}{A B}$ and $\stackrel{\leftrightarrow}{C D}$ are parallel, perpendicular, or neither. |
| Your Turn:
 Given that $\mathrm{AB}=1 / 3, \mathrm{CD}=-1 / 3, \mathrm{EF}=2 / 6$, and $\mathrm{GH}=3$, determine whether the following pairs are
 parallel, perpendicular, or neither.
 a) $\mathrm{AB}(4,7) \quad \mathrm{D}(8,-2)$ |
| b) AB and CD |
| c) GH and $\mathrm{EF} \ldots$ |

3.4 Proving Lines Parallel

兑	- I can recognize special pairs of angles formed by parallel lines and transversals. - I can prove that two lines are parallel based on given angle relationships.

	Postulates and Theorems Used to State that a Pair of Lines is Parallel		
	$\frac{\text { Corresponding }}{\text { Angles }}$	- If two lines in a plane are cut by a transversal so that a pair of corresponding angles are \qquad , then the lines are \qquad -	
	$\frac{\text { Alternate Interior }}{\text { Angles }}$	- If two lines in a plane are cut by a transversal so that a pair of alternate interior angles are \qquad , then the lines are \qquad .	
	$\frac{\text { Alternate Exterior }}{\text { Angles }}$	- If two lines in a plane are cut by a transversal so that a pair of alternate exterior angles are \qquad , then the lines are \qquad .	
	$\frac{\text { Consecutive Interior }}{\text { Angles }}$	- If two lines in a plane are cut by a transversal so that a pair of consecutive interior angles are \qquad , then the lines are \qquad	

	Example 1: a. Determine which lines are parallel or choose "not enough information" b. Justify your answer. 1. $\angle 12 \cong \angle 14$ a. $r \\| S$ $\ell \\| m$ not enough information b. Justification: 2. $\angle 5 \cong \angle 13$ a. $r \\| S$ $\ell \\| m$ not enough information b. Justification: 3. $m \angle 11+m \angle 14=180$ a. $r \\| s$ $\ell \\| m$ not erough information b. Justification:
E	a. Determine which lines are parallel or choose "not enough information" b. Justify your answer. 4. $\angle 4 \cong \angle 10$ a. $r \\| S$ $\ell \\| m$ not enough information b. Justification: 6. $\angle 3 \cong \angle 9$ a. $r \\| s$ $\ell \\| m$ not enough infomation b. Justification:

Find the value of x so that $\ell \| m$.

