Geometry A 4.1 Angles of Triangles

1. Find $m \angle T$.

2. Find the measures of the numbered angles.

ASSIGNMENT
Name
Hour \qquad Date \qquad
2. Find the measures of the missing angles.

4. Find the measures of the numbered angles.

5. Find the measures of the numbered angles.

6. Find $m \angle 1$

7. Find x.

8. Find x.

Review:

9. Suppose $\angle 1$ and $\angle 2$ are vertical angles. If $m \angle 1=4 x+2$ and $m \angle 2=8 x-14$, find $m \angle 2$.
10. Suppose R is between Y and W. If $R Y=3 x-10, R W=66$, and $Y W=5 x+6$, find $R Y$.

Geometry A
4.2 Congruent Triangles

Name \qquad
ASSIGNMENT
Hour Date

1. If $\Delta R T Y \cong \triangle K N B$ complete each pair of congruent parts:
$\angle R \cong$ \qquad
\qquad

$$
\cong \angle N
$$

$$
\angle Y \cong
$$

\qquad

$$
\overline{R T} \cong
$$

\qquad
$\overline{R Y} \cong$ \qquad

$$
\cong \overline{N B}
$$

Identify the congruent triangles in each diagram.
2.

$\Delta S Q P \cong$ \qquad
3.

$\triangle M N O \cong$ \qquad
4.

$\triangle E F D \cong$ \qquad
5.

$\Delta R V T \cong$ \qquad
6. Using the diagram on the right, identify each pair of congruent parts:
\qquad $\angle T \cong$ \qquad $\angle T V R \cong$ \qquad
$\overline{R T} \cong$ \qquad

$$
\overline{T V} \cong
$$

$\overline{V R} \cong$ \qquad

Review:

For \#7-10, select the property, definition, postulate, or theorem from the box below that justifies each statement. Write the property, definition, postulate, or theorem on the line provided.

reflexive property	subtraction property	distributive property
symmetric property	multiplication property	midpoint theorem
transitive property	division property	definition of an angle bisector
addition property	substitution property	vertical angles theorem
segment addition postulate	angle addition postulate	complement theorem supplement theorem

7. If $m \angle 4=m \angle 5$, then $m \angle 4+20=m \angle 5+20$
8. $\mathrm{AD}=\mathrm{AD}$
9. If $\overline{A B} \cong \overline{B C}$ and $\overline{B C} \cong \overline{C E}$, then $\overline{A B} \cong \overline{C E}$
10. If $3(x+2)=60$, then $3 x+6=60$

Geometry A
4.3 Proving Congruence

Name \qquad
Hour \qquad Date \qquad
ASSIGNMENT

What household appliance will never be able to swim?

To find out, identify whether each pair of triangles is congruent by SSS, SAS, or ASA. Circle the letter that represents this characteristic. Place the circled letters in the blanks at the bottom of the page above the corresponding problem numbers.
1.

(O) SSS
(T) SAS
(L) ASA
2.

(H) SSS
(K) SAS
(M) ASA
3.

(Y) SSS
(B) SAS
(E) ASA

5.

(S) SSS
(A) SAS
(C) ASA
(J) SSS
(I) SAS
(T) ASA
6.

(W) SSS
(R) SAS
(N) ASA
7.

(K) SSS
(M) SAS
(F) ASA

$$
\overline{1} \frac{}{2} \quad \frac{}{4} \quad \frac{}{5} \frac{-}{6}
$$

Identify whether each pair of triangle are congruent by SSS, SAS, ASA, AAS or HL. Otherwise, write "not enough information."

2.

4.

5.

6.

8.

9.

10.

Geometry A

4.4 Triangle Congruence Proofs

Name
Hour \qquad

ASSIGNMENT

1. Given: $\overline{R S} \cong \overline{T S}, V$ is the midpoint of $\overline{R T}$

Prove: $\Delta R S V \cong \Delta T S V$

Statements	Reasons
1. $\overline{R S} \cong \overline{T S}$	1.
2.	2. Given
3.	3. Midpoint Theorem
4. $\overline{V S} \cong \overline{V S}$	4.
5. $\Delta R S V \cong \triangle T S V$	5.

2. Given: $\overline{J K} \cong \overline{M K}, \angle N \cong \angle L$ Prove: $\triangle J K N \cong \triangle M K L$

Statements	Reasons
1. $\overline{J K} \cong \overline{M K}$	$\mathbf{1 .}$
2. $\angle N \cong \angle L$	2.
3. $\angle J K N \cong \angle M K L$	3.
4. $\triangle J K N \cong \triangle M K L$	4.

3. Given: $\overline{Q R} \| \overline{T U}, S$ is the midpoint of $\overline{Q T}$ Prove: $\overline{R S} \cong \overline{U S}$

Statements	Reasons
1.	1. Given
2. $\angle Q \cong \angle T$	2.
3. S is the midpoint of $\overline{Q T}$	3.
4.	4. Midpoint Theorem
5.	5. Vertical Angles Theorem
6. $\Delta Q S R \cong \triangle T S U$	6.
7. $\overline{R S} \cong \overline{U S}$	

4. Given: $\angle D \cong \angle F, \overline{G E}$ bisects $\angle D E F$

Prove: $\overline{D G} \cong \overline{F G}$

Statements	Reasons
1. $\angle D \cong \angle F$	1.
2. $\overline{G E}$ bisects $\angle D E F$	2.
3.	3. Definition of Angle Bisector
4.	4. Reflexive Property
5.	$\mathbf{5 .}$
6. $\overline{D G} \cong \overline{F G}$	6.

Geometry A

4.5 Isosceles and Equilateral Triangles

Name \qquad
ASSIGNMENT

Classify each triangle as scalene, isosceles, or equilateral.
1.

2.

3.

4.

5.

6.

7. Suppose that $\overline{F J} \cong \overline{F H}$ and $\overline{H F} \cong \overline{H G}$. If $m \angle F H G=126^{\circ}$, find $m \angle J$.

$m \angle J=$ \qquad
8. Find the value of y and the measure of each side of isosceles $\triangle A B C$ if $A B=B C, A B=4 y, B C=3 y+2$, and $A C=3 y$. Show all organized work.

$$
y=
$$

\qquad $A B=$ \qquad $B C=$ \qquad $A C=$ \qquad
9. Find the value of x and the measure of each side of equilateral $\triangle A B C$ if $A B=3 x-2, B C=2 x+4$, and $C A=x+10$. Show all organized work.

$$
x=
$$

\qquad $A B=$ \qquad $B C=$ \qquad $C A=$ \qquad
10. Find the value of x and the measure of each side of equilateral $\Delta R S T$ if $R S=2 x+2, S T=3 x$, and $T R=5 x-4$. Show all organized work.

$$
x=
$$

\qquad $R S=$ \qquad $S T=$ \qquad $T R=$ \qquad
11. Suppose $\Delta J K M$ is isosceles with vertex angle K. If $J K=5 x-3, J M=3 x+7$, and $K M=2 x+9$, find the value of $x, J K, J M$, and $K M$.

$$
x=\square \quad J K=\square \quad J M=\square \quad K M=
$$

12. Given: $\triangle M P R$ is isosceles with vertex P, $\overline{P N} \perp \overline{M R}$

Prove: $\overline{M N} \cong \overline{N R}$

1. $\triangle M P R$ is isosceles with vertex P	1.
2. $\overline{P N} \perp \overline{M R}$	2.
3. $\overline{M P} \cong \overline{R P}$	3.
4. $\overline{P N} \cong \overline{P N}$	4.
5. $\triangle M P N \cong \triangle R P N$	5.
6. $\overline{M N} \cong \overline{N R}$	6.

Review:

13. Find the value of y in the figure at the right.

Multiple Choice:

14. Given: $m \angle A+m \angle B=150$.

Conjecture: $\angle A$ and $\angle B$ are both acute angles.
Which one of the following is a counterexample to the conjecture?
A. $m \angle A=100$ and $m \angle B=50$
B. $m \angle A=45$ and $m \angle B=105$
C. $m \angle A=65$ and $m \angle B=85$
D. None of the above statements is a counterexample because the conjecture is true.
15. Which one of the following pairs of slopes are slopes corresponding to perpendicular lines?
A. $\frac{2}{3}$ and $\frac{9}{6}$
B. $-\frac{12}{8}$ and $-\frac{3}{2}$
C. $-\frac{2}{3}$ and $\frac{12}{8}$
D. $\frac{10}{15}$ and $-\frac{3}{2}$

Geometry A
Unit 4 Review

Name \qquad
Hour \qquad
2. Find the measure of each indicated angle.

$m \angle 1=$ \qquad $m \angle 2=$ \qquad
3. Find the measure of each indicated angle.

$m \angle 1=$ \qquad $m \angle 2=$ \qquad $m \angle 3=$ \qquad $m \angle 1=$ \qquad $m \angle 2=$ \qquad $m \angle 3=$ \qquad
5. Find the measure of each indicated angle.

$m \angle 1=$ \qquad $m \angle 2=$ \qquad $m \angle 3=$ \qquad $m \angle 4=$ \qquad $m \angle 5=$ \qquad
6. Refer to the figure below. Find the measure of each indicated angle if $m \angle 6=51^{\circ}$ and $m \angle 8=134^{\circ}$.

$m \angle 1=$ \qquad $m \angle 2=$ \qquad $m \angle 3=$ \qquad $m \angle 4=$ \qquad $m \angle 5=$ \qquad
$m \angle 7=$ \qquad $m \angle 9=$ \qquad $m \angle 10=$ \qquad $m \angle 11=$ \qquad $m \angle 12=$ \qquad
7. Find the value of $x, A B, B C$, and $A C$ if $\triangle A B C$ is equilateral.

$x=$ \qquad

$$
A B=
$$

\qquad

$$
B C=
$$

$$
A C=
$$

8. Find the value of x.

9. Suppose $\triangle J K M$ is isosceles with vertex angle K. If $m \angle J=8 x-5$ and $m \angle M=3 x+25$, find $m \angle K$.
10. Suppose that $\overline{A B} \cong \overline{D B}$ and $\overline{C D} \cong \overline{B D}$. If $m \angle A=31^{\circ}$, find $m \angle B D C$.

\qquad
11. Identify the congruent triangles in the figure below.

Then name the corresponding congruent angles and congruent sides for the congruent triangles.

$\Delta F G D \cong$	
$\angle F G D \cong$	$\overline{D G} \cong$
$\angle G D F \cong$	$\overline{F D} \cong$
$\angle D F G \cong$	$\overline{F G} \cong$

14. Identify the congruent triangles in the figure below.

Then name the corresponding congruent angles and congruent sides for the congruent triangles.

15. Determine whether you can prove that each pair of triangles is congruent by using $\boldsymbol{S S S}, \boldsymbol{S A S}, \boldsymbol{A S A}, \boldsymbol{A A S}$, or $\boldsymbol{H L}$. If it is not possible to prove that the triangles are congruent, write not possible.
a.

b.

e.

f.

g.

j.

h.

k.

i.

1.

16. Given: $\overline{B D}$ bisects $\angle A B C$
$\overline{A B} \cong \overline{C B}$
Prove: $\triangle B D A \cong \triangle B D C$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

17. Given: $\angle A \cong \angle C$ $\angle A D B \cong \angle C B D$
Prove: $\triangle A D B \cong \triangle C B D$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.

18. Given: P is the midpoint of $\overline{N S}$
$\angle N \cong \angle S$ $\angle M P N \cong \angle R P S$
Prove: $\overline{M N} \cong \overline{R S}$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.

19. Complete the following proof.

Given: $\overline{A B} \| \overline{D E}$ $\overline{A D}$ bisects $\overline{B E}$

Prove: $\overline{A C} \cong \overline{D C}$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.

20. Complete the following proof.

Given: $\overline{A E} \cong \overline{C F}$
$\triangle A B C$ is isosceles with vertex angle $\angle B$.

Prove: $\overline{B E} \cong \overline{B C}$

Statements	Reasons
1. $\overline{A E} \cong \overline{C F}$	1.
2. $\triangle A B C$ is isosceles with vertex angle $\angle B$.	2.
3.	3. Definition of an Isosceles Triangle
4. $\angle A \cong \angle C$	4.
$5 . \triangle A B E \cong \triangle C B F$	5.
6.	6.

