Upit 4: Polypomials (Basics)

8		
Lesson	A ssignment	
Unit 4 Introduction		
Learning Targets:	Unit 4 Introduction Worksheet	
 I can use the power properties to simplify monomials. 		
4.1 Roots of Real Numbers		
Learning Targets:	Worksheet 4.1	
 I can simplify radicals. 		
 I can use a calculator to approximate radicals. 		
4.2 Radical Expressions		
Learning Targets:	Worksheet 4.2	
 I can simplify radical expressions. 		
• I can add, subtract, multiply, and divide radical expression		
4.3 Rational Exponents		
Learning Targets:	Worksheet 4.3	
 I can write expressions with rational exponents in 		
radical form, and vice versa.		
- I can simplify expressions in exponential or radical form.		
4.4 Radical Equations and Inequalities		
Learning Targets:	Worksheet 4.4	
 I can solve equations containing radicals. 		
4.5 Complex Numbers		
Learning Targets:	Worksheet 4.5	
 I can add and subtract complex numbers. 		
 I can multiply and divide complex numbers. 		
Unit 4 Review	Review Worksheet	
	Study for the test!	

Klassen

Unit 4 Introduction

Product of Monomials

O I can identify the base and the exponent.

O I can simplify product of monomials.

Example 1: Simplify the following

a. $(4^5)(4^2)$ b. $(6x^2)(x^4)$ c. $(3x^4y)(-4x^2)$

Your Turn 1: Simplify the following

1. $(2^{3})(2^{4})$ 2. $(5v^{4})(3v)$ 3. $(-4ab^{6})(7a^{2}b^{3})$

Example 3: Simplify the following d. $(10ab^4)^3 (3b^2)^2$

<u>Your Turn 3:</u> Simplify the following 4. $(2xy^2)^3(-4x^5)^2$

Ex	ample 4:	Simplify the following	<u>Your Turn!!</u>
a.	$\frac{16x^3y^4}{4x^5y}$	b. $\frac{(3a^7b^2)}{12a^4b^8}$	$\frac{(3xy^5)}{(2x^3y^7)}$

What it is:

What it looks like:

4.	$6a^0$	5.	$4a^{-5}b^{7}$
	$\overline{3a^{-2}}$		$\overline{6a^{-2}b^{-3}}$

<u>Your Turn 2:</u>		
u. 5^{-2}	$3x^0y^{-2}$	$\left(12ab^3\right)^0$
$\overline{y^{-9}}$	$\overline{15x^{-4}y}$	$\left(\overline{4a^{-4}b^{-4}}\right)$

4.1 - Lesson Roots of Real Numbers

 Learning Targets I can simplify radicals. I can use a calculator to approximate radicals.

Your Turn 2: Simplify.				
a. $\sqrt{(3x-1)^2}$	b.	$\sqrt[3]{-8}$	c.	$\sqrt{(-3c)^4}$
Example 3: Use a calculator to ap	pro	ximate each value to three	decir	nal places.
a. $\sqrt{1050}$	b.	$\sqrt[3]{0.054}$	c.	$-\sqrt[4]{500}$
Your Turn 2: Use a calculator to	app	roximate each value to three	e de	cimal places.
a. $\sqrt{12,500}$	b.	$\sqrt[3]{-15}$	C.	$\sqrt[6]{856}$
In your own words, what is the Bi	g I	dea of the lesson.		
Big Idea:				

Name _____

Unit 4 Notes

4.2 - Radical Expressions

Learning Targets	 I can simplify radical expressions. I can add, subtract, multiply, and divide radical expressions.
---------------------	---

Example 3: Simplify. (Adding radicals.) $2\sqrt{50} + 4\sqrt{500} - 6\sqrt{125}$	Your Turn 3: Simplify. $\sqrt{20} + \sqrt{125} - \sqrt{45}$
Example 4: Simplify. (Multiplying radicals.) a. $(4\sqrt{12})(3\sqrt{20})$	Your Turn 4: Simplify. a. $2\sqrt{3}(\sqrt{15} + \sqrt{60})$
b. $(2\sqrt{3} - 4\sqrt{2})(\sqrt{3} + 2\sqrt{2})$	b. $(\sqrt{3} + 4\sqrt{7})^2$
Example 5: Simplify. (Dividing radicals.) Re	member conjugates!!!
a. $\frac{2-\sqrt{5}}{3+\sqrt{5}}$	b. $\frac{4+\sqrt{2}}{2-\sqrt{2}}$

Cour Turn 5: Simplify.		
3	$3 + \sqrt{2}$	
$7 - \sqrt{2}$	b. $2 - \sqrt{2}$	
	Big Idop of the logger	
ig Idea:	Dig luca of the lesson.	
	Name	

4.3 - Rational Exponents

Unit 4 Notes

Learning Targets	• I can write expressions with rational exponents in radical form, and vice versa.
	• I can simplify expressions in exponential or radical form.

		4.4 - Radical Equations			
Learı Targ	ning gets	• I can solve equations containing radicals.			
Solve Ravariables	adical H s in the s	Equations: The following steps are used in solving equations that have radicand. Some algebraic procedures may be needed before you use these steps.			
Step 1:	Isolate	the radical on one side of the equation. (No #'s in front or separate.)			
Step 2:	To elin of the r	minate the radical, raise each side of the equation to a power equal to the index radical.			
Step 3:	Solve t	the resulting equation.			
Step 4:	Check any ext	your solution in the <u>original equation</u> to make sure that you have not obtained ra roots.			
Exan	nple 1:	Solve. $2\sqrt{4x+8} - 4 = 8$			
Chec	k:				
Your Tu	urn 1: 5	Solve. $2\sqrt{3x+4} + 1 = 15$			
Che	ck:				

Example 2: Solve. $\sqrt{3x + 1} = \sqrt{5x - 1}$	
Check	
Check.	
N = T = 0.01 = 1/0 = -11	
Your Turn 2: Solve. $\sqrt{9x} - 11 = x + 1$	
Check:	

Your Turn 3: Solve and check each equation.

a.
$$\sqrt{5-x} - 4 = 6$$

b. $4\sqrt[3]{2x+11} - 2 = 10$
c. $\sqrt{x^2 + 7x} = \sqrt{7x - 9}$
In your own words, what is the **Big Idea** of the lesson.
Big Idea:

4.5 - Complex Numbers			
Learning Targets	 I ca I ca 	n add and subtract complex numbers. n multiply and divide complex numbers.	
Add and Subtract Complex Numbers			
Complex Number		A complex number is any number that can be written in the form $a + bi$, where a and b are real numbers and i is the imaginary unit ($i^2 = -1$). a is called the real part, and b is called the imaginary part.	
Imaginery:	i =	$i^{12} =$	
i^2	2 =	$i^{25} =$	
i^2	3 =	$i^{52} =$	
i	⁴ =		
i	5 =		
Addition and Subtraction of Complex Numbers		Combine like terms. (a + bi) + (c + di) = (a + c) + (b + d)i (a + bi) - (c + di) = (a - c) + (b - d)i	
Example 1: Simplify. (add & subtract)			
a. $(6+i) + (4-5i)$		b. (8+3i) - (6-2i)	
Your Turn 1: Simplify.			
a. $(-4+2i) + (6-3i)$ b. i^{15} c. $(5+2i) - (-6-3i)$			

Example 2: Simplify. (multiply)	Your Turn 2: Simplify.
$(2-5i) \cdot (-4+2i)$	(4 - 6i)(2 + 3i)
Example 3: Simplify. (divide)	Your Turn 3: Simplify.
$\frac{3-\boldsymbol{i}}{2+3\boldsymbol{i}}$	$\frac{3+4\boldsymbol{i}}{4-5\boldsymbol{i}}$
Example 4: Solve.	Your Turn 4: Solve.
$2x^2 + 24 = 0$	$5x^2 + 45 = 0$

Check for understanding.

Simplify.

1. (5 - i) - (3 - 2i)

2.
$$(5 - 3i)(-1 - i)$$

 $\frac{3+4i}{4-5i}$

 i^{65}

4.

Solve.

4. $x^2 + 18 = 0$

In your own words, what is the **Big Idea** of the lesson.

Big Idea: _____