4.1 Angles of Triangles

- I can use the Angle Sum Theorem.	
	- I can use the Exterior Angle Theorem.

4.2 Congruent Triangles

\%	- I can name and label corresponding parts of congruent triangles.

Corresponding Parts of Congruent Triangles are Congruent (CPCTC)

4.3 Proving Congruence

	Side-Side-Side (SSS) Congruence	Side-Angle-Side (SAS) Congruence
$\begin{aligned} & \ddot{0} \\ & 0 \\ & E \\ & \tilde{\#} \\ & \tilde{\theta} \end{aligned}$	Angle-Side-Angle (ASA) Congruence	Angle-Angle-Side (AAS) Congruence
	Hypotenuse-Leg Congruence (HL) ***This is the only case (a right triangle) that are congruent.	A is a valid way of proving that two triangles

	Example 2: Draw and Label $\triangle M W G$ and $\triangle A R C$. Indicate which additional pair of corresponding parts needs to be congruent for the triangles to be congruent by the ASA Theorem. $\angle G \cong \angle C, \angle M \cong \angle A$	Example 3: Draw and Label $\triangle X Y Z$ and $\Delta D G K$. Indicate which additional pair of corresponding parts needs to be congruent for the triangles to be congruent by the SAS Theorem. $\overline{X Z} \cong \overline{G K}, \angle Z \cong \angle K$
	Your Turn: Draw and Label $\triangle A B C$ and $\triangle D E F$. Indica needs to be congruent for the triangles to be co $\angle A \cong \angle D, \overline{B C} \cong \overline{E F}$	which additional pair of corresponding parts gruent by the AAS Theorem.

4.4 Proofs with Triangle Congruence

	Example 1: Complete the following proof. Given: $\begin{aligned} & \overline{R S} \cong \overline{U T} \\ & \overline{R T} \cong \overline{U S} \end{aligned}$ Prove: $\Delta R S T \cong \triangle U T S$	
	Statements	Reasons
	1. $\overline{R S} \cong \overline{U T}$	1.
	2. $\overline{R T} \cong \overline{U S}$	2.
	3.	3.
	4.	4.
	Example 2: Complete the following proof. Given: $\overline{R S} \cong \overline{T S}$ $\overline{U S}$ bisects $\angle R S T$ Prove: $\Delta R S U \cong \Delta T S U$	
	Statements	Reasons
	1. $\overline{R S} \cong \overline{T S}$	1.
	2. $\overline{U S}$ bisects $\angle R S T$	2.
	3.	3.
	4.	4.
	5.	5.

	Example 5: Complete the following proof. Given: $\begin{aligned} & \overline{D E} \\| \overline{F G} \\ & \angle E \cong \angle G \\ & \overline{D G} \cong \overline{F E} \end{aligned}$	
	Statements	Reasons
	1. $\overline{D E} \\| \overline{F G}$	1.
	2. $\angle E \cong \angle G$	2.
	3.	3.
	4.	4.
	5.	5.
	6.	6.
	Example 6: Complete the following proof. Given: $\begin{array}{r}\overline{A B} \cong \overline{D B} \\ \overline{B C} \perp \overline{A D}\end{array}$ Prove: $\angle A \cong \angle D$	
	Statements	Reasons
	1. $\overline{A B} \cong \overline{D B}$	1.
	2. $\overline{B C} \perp \overline{A D}$	2.
	3.	3.
	4.	4.
	5.	5.

4.5 Isosceles and Equilateral Triangles

兑	- I can recognize and use properties of isosceles triangles. - I can recognize and use properties of equilateral triangles.

	Type of Triangle	Definition	Picture
	Isosceles Triangle	Triangles with at least two congruent sides	
	Equilateral Triangle	Triangles with three congruent sides	

		Isosceles Trian	
	Type of Angle	Definition	Picture
	Vertex Angle Base Angles	The angle formed by the \qquad \qquad The angles \qquad of the	
$\begin{aligned} & 1 \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \end{aligned}$	Isosceles Triangle	heorem f a triangle are \qquad those sides are \qquad	angles

Example 1:

\square

4.6 Constructing Triangles

	\bullet I can construct a triangle given 3 side lengths.
	- I can construct a triangle given 2 angles and the included side.
	- I can construct an equilateral triangle given a side length.
	- I can construct an isosceles triangle given the base and leg length.

- Constructing Triangles Given 3 Side Lengths Side-Side-Side (SSS)

Example 1: Construct a triangle that has the following 3 side lengths.

- Constructing Triangles Given 2 Side Lengths and the Included Angle Side-Angle-Side (SAS)

Example 2: Construct a triangle that has the following 2 side lengths and included angle.
\qquad

- Constructing Triangles Given 2 Angles and the Included Side Angle-Side-Angle (ASA)

Example 3: Construct a triangle that has the following angles and included side length.

- Constructing an Equilateral Triangle

Example 4: Construct an equilateral triangle that has the following side length.

Example 1: CONSTRUCTING A TRIANGLE GIVEN 3 SIDE LENGTHS (SSS)

After doing this	Your work should look like this
Start with three line segments that will be the three sides of $\triangle A B C$.	
1. Mark a point A that will be one vertex of the new triangle.	
2. Set the compass width to the length of the segment $A B$. This will become the base of the new triangle.	
3. With the compass point on A, make an arc near the future vertex B of the triangle.	
4. Mark a point B on this arc. This will become the next vertex of the new triangle.	
5. Set the compass width to the length of the line segment $A C$.	
6. Place the compass point on A and make an arc in the vicinity of where the third vertex of the triangle (C) will be. All points along this arc are the distance $A C$ from A, but we do not yet quite know exactly where vertex C will be.	

Example 2: CONSTRUCTING A TRIANGLE GIVEN 2 SIDE LENGTHS and the INCLUDED ANGLE (SAS)

11. With the compass point on A, make an arc across the second ray, creating point C.	
12. Draw the segment $\overline{B C}$, the third side of the triangle	
Done! $\triangle A B C$ has the desired two side lengths and included angle.	

Example 3: CONSTRUCTING A TRIANGLE GIVEN 2 ANGLES and the INCLUDED SIDE (ASA)

After doing this	Sour work should look like this
Start with the given line segment and two angles.	
1. Mark a point A that will be one vertex of the new triangle.	
2. Set the compass width to the length of $\overline{A B}$.	
3. With the compass point on A, make an arc near the future vertex B of the triangle.	

6. Without changing the compass width, draw an arc at point A on the new triangle. The arc must cross $\overline{A B}$ and also cross the future side of the triangle.
7. Set the compass to the arc width at the given angle A. This is the distance between the points where the arc intersects the sides of the angle.
8. Near point A, draw an arc in a similar position so it crosses the arc drawn earlier.
9. Draw a line from A through
the point where the arcs
intersect. This will become the
second side of the triangle. Draw
it long.

After doing this	
Start with the line segment $\overline{B C}$ which is the length of the sides of the desired equilateral triangle.	
1. Pick a point P that will be one vertex of the finished triangle.	
2. Place the point of the compass on point B and set its drawing end to point C.	
The compass is now set to the length of the sides of the finished triangle. Do not change it from now on.	
3. With the compass point on P, make two arcs, each roughly where the other two vertices of the triangle will be.	

5. Place the compass point on Q and draw an arc that crosses the other arc, creating point R.

$$
\mathrm{B} \longmapsto \mathrm{C}
$$

6. Using the straightedge,
 draw three segments linking the points P, Q, and R.

