Algebra 2A
\qquad

4.1

Simplify each expression completely.

1. $\sqrt{25 p^{4} q^{2}}$
2. $\sqrt[4]{a^{16} b^{8}}$
3. $\sqrt[5]{32 p^{25} q^{15} r^{5} s^{20}}$

4.2

Simplify each expression completely.
4. $\sqrt{9 h^{22}}$
5. $\sqrt[3]{256 t^{4}}$
6. $\sqrt[3]{2401 x^{5} y^{6}}$
7. $\sqrt{507 x^{17} y^{24}}$

Algebra 2A

4.2 cont.

Simplify each expression completely.
8. $\sqrt{3}+\sqrt{72}-\sqrt{128}+\sqrt{108}$
9. $5 \sqrt{20}+\sqrt{24}-\sqrt{180}+7 \sqrt{54}$
10. $\frac{7}{4-\sqrt{3}}$
11. $\frac{-2-\sqrt{3}}{1+\sqrt{3}}$

Algebra 2A

4.3

Write the given expression in radical form.
12. $m^{\frac{9}{17}}$
13. $\left(b^{13}\right)^{15}$

Write the given radical using rational exponents.
14. $\sqrt[2]{5 a^{5} b^{9}}$
4.4

Solve the given equation.
16. $\sqrt[3]{c-1}=2$
17. $5+\sqrt{4 y-5}=12$

Algebra 2A

4.5

18. $(5-2 i)+(4+4 i)$ 19. $(3-4 i)-(1-4 i)$
19. $(-3-i)(2-2 i)$
20. Mr. Fandango wants to know the dimensions of a perfect cubic swimming pool that can hold a volume of $42,875 \mathrm{ft}^{3}$ of water. The dimensions of the pool are:
$(5 \mathrm{x}-15) \mathrm{ft}$. by $(5 \mathrm{x}-15) \mathrm{ft}$. by $(5 \mathrm{x}-15) \mathrm{ft}$.
Show work!

21. solve for $\mathbf{x}=$ \qquad
