<u>4.1</u>

Simplify each expression completely.

1.
$$\sqrt{25p^4q^2}$$

2.
$$\sqrt[4]{a^{16}b^8}$$

$$3. \quad \sqrt[5]{32p^{25}q^{15}r^5s^{20}}$$

<u>4.2</u>

Simplify each expression completely.

4.
$$\sqrt{9h^{22}}$$

5.
$$\sqrt[3]{256t^4}$$

6.
$$\sqrt[3]{2401x^5y^6}$$

7.
$$\sqrt{507x^{17}y^{24}}$$

4.2 cont.

Simplify each expression completely.

8.
$$\sqrt{3} + \sqrt{72} - \sqrt{128} + \sqrt{108}$$

9.
$$5\sqrt{20} + \sqrt{24} - \sqrt{180} + 7\sqrt{54}$$

10.
$$\frac{7}{4-\sqrt{3}}$$

11.
$$\frac{-2-\sqrt{3}}{1+\sqrt{3}}$$

<u>4.3</u>

Write the given expression in radical form.

12.
$$m^{\frac{9}{17}}$$

13.
$$(b^{13})^{\frac{15}{7}}$$

Write the given radical using rational exponents.

14.
$$\sqrt[2]{5a^5b^9}$$

15.
$$\sqrt[6]{8x^3y}$$

<u>4.4</u>

Solve the given equation.

16.
$$\sqrt[3]{c-1} = 2$$

17.
$$5 + \sqrt{4y - 5} = 12$$

<u>4.5</u>

18.
$$(5-2i)+(4+4i)$$

19.
$$(3-4i)-(1-4i)$$

20.
$$(-3-i)(2-2i)$$

21. Mr. Fandango wants to know the dimensions of a perfect cubic swimming pool that can hold a volume of 42,875 ft³ of water. The dimensions of the pool are:

$$(5x-15)$$
 ft. by $(5x-15)$ ft. by $(5x-15)$ ft.

Show work!

21. solve for
$$x = \underline{}$$