Name _____

<u>Assignment</u>

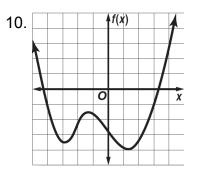
State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why.

1. $(3x^2 + 1)(2x^2 - 9)$ 2. $\frac{1}{5}x^3 - \frac{3}{5}x^2 + \frac{4}{5}x$

3.
$$\frac{2}{x^2} + 3x - 12$$

4. $27 + 3xy^3 - 12x^2y^2 - 10y$

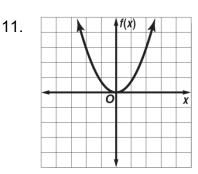
Use <u>synthetic substitution</u> to find p(-2) and p(3) for each function.


5. $p(x) = x^3 - x^5$ 6. $p(x) = -x^5 + 4x^3$

Use <u>direct substitution</u> to find each value if $p(x) = 3x^2 - 4$ and $r(x) = 2x^2 - 5x + 1$.

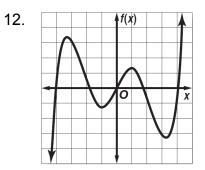
7. p(8a) 8. $r(a^2)$

9. r(x+2)


For each graph, <u>describe the end behavior</u>, determine whether it represents an <u>odd-</u> <u>degree or even-degree</u> polynomial function and state the <u>number of real zeroes</u>.

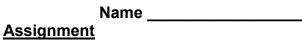
End Behavior: $\lim_{x \to -\infty} f(x) =$ $\lim_{x \to +\infty} f(x) =$

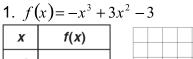
Odd or Even Degree: _____

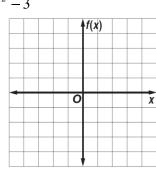

Number of Real Zeros: _____

End Behavior: $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) =$

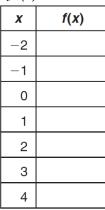
Odd or Even Degree: _____

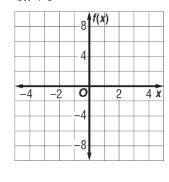

Number of Real Zeros: _____



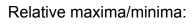

End Behavior: $\lim_{x \to \infty} f(x) = \lim_{x \to +\infty} f(x) =$

Odd or Even Degree: _____


Number of Real Zeros: _____



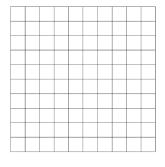
2.
$$f(x) = x^3 - 1.5x^2 - 6x + 1$$



Zeros:

Zeros:

Relative maxima/minima:


3. $f(x) = .75x^4 + x^3 - 3x^2 + 4$

Zeros:

Relative maxima/minima:

4. $f(x) = x^4 + 4x^3 + 6x^2 + 4x - 3$

Zeros:

Relative maxima/minima:

Algebra 2A	Name	
5.3	<u>Assignment</u>	
Write each expression in qua 1. $10x^4 + 3x^2 - 11$	dratic form, if possible. 2. $5x^8 + x^2 + 6$	3. $28x^6 + 25x^3$

4. $32x^5 - 56x^3 + 8x$ **5.** $x^{\frac{2}{3}} + 7x^{\frac{1}{3}} - 10$ **6.** $x^{\frac{1}{5}} + 29x^{\frac{1}{10}} + 2$

Solve each equation.

7.
$$x^4 - 7x^3 - 18x^2 = 0$$

8. $x^4 - 625 = 0$

9. $x^4 - 49x^2 = 0$

10. $4x^6 - 9x^4 = 0$

$$x^4 - 24 = -2x^2$$
 12. $x^{\frac{1}{2}} - 5x^{\frac{1}{4}} + 6 = 0$

13.
$$x^{\frac{4}{3}} - 29x^{\frac{2}{3}} + 100 = 0$$
 14. $x^{3} - 28x^{\frac{3}{2}} + 27 = 0$

15.
$$x - 10\sqrt{x} + 25 = 0$$

11.

Name _____

<u>Assignment</u>

Given a polynomial and one of its factors, find the remaining factors of the polynomial. Some factors may not be binomials.

1. $x^3 + 3x^2 - 6x - 8$; (x - 2)

2. $x^3 + 7x^2 + 7x - 15$; (x-1)

3. $x^3 + 5x^2 - 2x - 24$; (x-2)

4. $x^3 - x^2 - 14x + 24$; (x+4)

5. $18x^3 + 9x^2 - 2x - 1$; (2x+1)

6.
$$6x^3 + 5x^2 - 3x - 2$$
; $(3x - 2)$

Name _____

<u>Assignment</u>

Find all the zeros of each function.

Step 1: Find at least one real (exact) zero with your graphing calculator. Step 2: Use synthetic substitution until the depressed polynomial is a degree two. Step 3: Solve the quadratic equation by the method of your choice.

1. $h(x) = 2x^3 + 3x^2 - 65x + 84$

2. $p(x) = x^3 - 3x^2 + 9x - 7$

3. $h(x) = x^3 - 7x^2 + 17x - 15$

4. $f(x) = x^4 + 50x^2 + 49$

Write a polynomial function of least degree with integral coefficients that has the given zeros.

5. – 5, 3*i*

6. 7, 4*i*

Algebra 2A 5.5 extra practice

Assignment

Name _____

Find all of the rational zeros of each function.

1. $f(x) = x^3 - 2x^2 + 5x - 4$

2. $f(x) = x^3 - 3x^2 - 4x + 12$

3. $f(x) = x^3 - x^2 + 4x - 4$

4. $f(x) = 3x^3 + 2x^2 + 27x + 18$

Name ______Assignment

Find
$$(f+g)(x)$$
, $(f-g)(x)$, $(f \cdot g)(x)$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$.

1.
$$\frac{f(x) = 2x + 1}{g(x) = x - 3}$$

2. $\frac{f(x) = x^2 + 7x + 12}{g(x) = x^2 - 9}$

Sum:

Difference:

Difference:

Sum:

Product:

Quotient:

Quotient:

Product:

Find both $[g \circ h](x)$ and $[h \circ g](x)$.

3.
$$\frac{g(x) = 3x}{h(x) = x - 4}$$

4. $\frac{g(x) = x - 2}{h(x) = 3x^2 + 1}$

If $f(x) = x^2$, g(x) = 5x, and h(x) = x + 4, find each value. 5. f[g(1)] 6. g[h(-2)]

7. h[f(4)]

8. *h*[*g*(-3)]

9. *h*[*f*(20)]