Algebra 2A
Name \qquad
5.1

Assignment

State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why.

1. $\left(3 x^{2}+1\right)\left(2 x^{2}-9\right)$
2. $\frac{1}{5} x^{3}-\frac{3}{5} x^{2}+\frac{4}{5} x$
3. $\frac{2}{x^{2}}+3 x-12$
4. $27+3 x y^{3}-12 x^{2} y^{2}-10 y$

Use synthetic substitution to find $p(-2)$ and $p(3)$ for each function.
5. $p(x)=x^{3}-x^{5}$
6. $p(x)=-x^{5}+4 x^{3}$

Use direct substitution to find each value if $p(x)=3 x^{2}-4$ and $r(x)=2 x^{2}-5 x+1$.
7. $p(8 a)$
8. $r\left(a^{2}\right)$
9. $r(x+2)$

For each graph, describe the end behavior, determine whether it represents an odddegree or even-degree polynomial function and state the number of real zeroes.
10.

End Behavior: $\lim _{x \rightarrow-\infty} f(x)=$

$$
\lim _{x \rightarrow+\infty} f(x)=
$$

Odd or Even Degree: \qquad
Number of Real Zeros: \qquad -
11.

End Behavior: $\lim _{x \rightarrow-\infty} f(x)=$ $\lim _{x \rightarrow+\infty} f(x)=$

Odd or Even Degree: \qquad
Number of Real Zeros: \qquad
12.

End Behavior: $\lim _{x \rightarrow-\infty} f(x)=$ $\lim _{x \rightarrow+\infty} f(x)=$

Odd or Even Degree: \qquad
Number of Real Zeros: \qquad

Algebra 2A

5.2

1. $f(x)=-x^{3}+3 x^{2}-3$

\boldsymbol{x}	$f(x)$
-2	
-1	
0	
1	
2	
3	
4	

Zeros:

Relative maxima/minima:
3. $f(x)=.75 x^{4}+x^{3}-3 x^{2}+4$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$

Zeros:

Relative maxima/minima:
2. $f(x)=x^{3}-1.5 x^{2}-6 x+1$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	
-1	
0	
1	
2	
3	
4	

Zeros:

Relative maxima/minima:
4. $f(x)=x^{4}+4 x^{3}+6 x^{2}+4 x-3$

Zeros:

Relative maxima/minima:

Algebra 2A
5.3

Name \qquad
Assignment

Write each expression in quadratic form, if possible.

1. $10 x^{4}+3 x^{2}-11$
2. $5 x^{8}+x^{2}+6$
3. $28 x^{6}+25 x^{3}$
4. $32 x^{5}-56 x^{3}+8 x$
5. $x^{\frac{2}{3}}+7 x^{\frac{1}{3}}-10$
6. $x^{\frac{1}{5}}+29 x^{\frac{1}{10}}+2$

Solve each equation.
7. $x^{4}-7 x^{3}-18 x^{2}=0$
8. $x^{4}-625=0$
9. $x^{4}-49 x^{2}=0$
10. $4 x^{6}-9 x^{4}=0$
11. $x^{4}-24=-2 x^{2}$
12. $x^{\frac{1}{2}}-5 x^{\frac{1}{4}}+6=0$
13. $x^{\frac{4}{3}}-29 x^{\frac{2}{3}}+100=0$
14. $x^{3}-28 x^{\frac{3}{2}}+27=0$
15. $x-10 \sqrt{x}+25=0$

Algebra 2A
5.4

Name

Assignment

Given a polynomial and one of its factors, find the remaining factors of the polynomial. Some factors may not be binomials.

1. $x^{3}+3 x^{2}-6 x-8 ;(x-2)$
2. $x^{3}+7 x^{2}+7 x-15 ;(x-1)$
3. $x^{3}+5 x^{2}-2 x-24 ;(x-2)$
4. $x^{3}-x^{2}-14 x+24 ;(x+4)$
5. $18 x^{3}+9 x^{2}-2 x-1 ;(2 x+1) \quad$ 6. $6 x^{3}+5 x^{2}-3 x-2 ;(3 x-2)$

Algebra 2A
5.5
\qquad

Find all the zeros of each function.

Step 1: Find at least one real (exact) zero with your graphing calculator.
Step 2: Use synthetic substitution until the depressed polynomial is a degree two.
Step 3: Solve the quadratic equation by the method of your choice.

1. $h(x)=2 x^{3}+3 x^{2}-65 x+84$
2. $p(x)=x^{3}-3 x^{2}+9 x-7$
3. $h(x)=x^{3}-7 x^{2}+17 x-15$
4. $f(x)=x^{4}+50 x^{2}+49$

Write a polynomial function of least degree with integral coefficients that has the given zeros.
5. $-5,3 i$
6. $7,4 i$

Algebra 2A
5.5 extra practice

Name

Assignment

Find all of the rational zeros of each function.

1. $f(x)=x^{3}-2 x^{2}+5 x-4$
2. $f(x)=x^{3}-3 x^{2}-4 x+12$
3. $f(x)=x^{3}-x^{2}+4 x-4$
4. $f(x)=3 x^{3}+2 x^{2}+27 x+18$
\qquad

Find $(f+g)(x),(f-g)(x),(f \cdot g)(x)$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$.

1. $\begin{aligned} & f(x)=2 x+1 \\ & g(x)=x-3\end{aligned}$

Sum:

Difference:

Product:

Quotient:

Find both $[g \circ h](x)$ and $[h \circ g](x)$.
3. $\begin{aligned} & g(x)=3 x \\ & h(x)=x-4\end{aligned}$
4. $\begin{aligned} & g(x)=x-2 \\ & h(x)=3 x^{2}+1\end{aligned}$
2. $f(x)=x^{2}+7 x+12$ $g(x)=x^{2}-9$

Sum:

Difference:

Product:

Quotient:

If $f(x)=x^{2}, g(x)=5 x$, and $h(x)=x+4$, find each value.
5. $f[g(1)]$
6. $g[h(-2)]$
7. $h[f(4)]$
8. $h[g(-3)]$
9. $h[f(20)]$

