Algebra 2A

$$
\begin{aligned}
& \text { Learping Igrgets: } \\
& \text { Unit s: Polynomials Pubctions }
\end{aligned}
$$

ALGEBRA 2A
Lesson: 5.1

Name: \qquad
Date: \qquad

Polynomial functions

0	
b	\square I can evaluate polynomial functions
j	\square I can identify general shapes of graphs of polynomial functions
e	\square t
c	

Polynomial Function: only one variable (x)
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$
a_{n} : \qquad , not zero
a_{0} : \qquad
$n:$ \qquad
All the exponents are \qquad numbers.

A polynomial function is in standard form if its terms are written in descending order of exponents from left to right.

Degree	Type	Standard Form
		$f(x)=a_{0}$
		$f(x)=a_{1} x+a_{0}$
		$f(x)=a_{\mathbf{2}} x^{2}+a_{1} x+a_{0}$
		$f(x)=a_{3} x^{3}+a_{\mathbf{2}} x^{2}+a_{1} x+a_{0}$
	quartic	$f(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$

Value of a function: $f(k)=$

- One way to evaluate polynomial functions is to use direct substitution.
- Another way to evaluate a polynomial is to use synthetic substitution.
$f(x)=x+2$
$g(x)=x^{2}-4$
$f(x)=x^{3}-2 x^{2}-10 x+20$
$p(x)=x^{4}+8 x^{2}-10$

Zeros may be real or complex... The Fundamental Theorem of Algebra:
$\boldsymbol{n}^{\text {th }}$ degree polynomial equation has exactly $\boldsymbol{\Pi}$ solutions.

End behavior of a polynomial function:

A

B

C

D

	an	n	$\boldsymbol{x} \rightarrow-\infty$
A)	positive	even	$f(\boldsymbol{x}) \rightarrow+\infty$
B)	positive	odd	
C)	negative	even	
D)	negative	odd	

$\begin{aligned} & \mathrm{I} \\ & \mathrm{n} \\ & \mathrm{~s} \\ & \mathrm{t} \\ & \mathrm{r} \\ & \mathrm{n} \end{aligned}$	Example 1: Decide whether the function is a polynomial function. If it is, write the function in standard form and state its degree, type and leading coefficient. 1. $f(x)=1 / 2 x^{2}-3 x^{4}-7$ 3. $f(x)=x^{3}+3^{x}$ 2. $f(x)=6 x^{2}+2 x^{-1}+x$ 4. $f(x)=-0.5 x+\pi x^{2}-\sqrt{2}$	
$\begin{aligned} & \mathrm{Y} \\ & \mathrm{o} \\ & \mathrm{u} \\ & \mathrm{r} \end{aligned}$	Your Turn 1: What are the degree and a) $3 x^{2}-2 x^{4}-7+x^{3}$ b) $100-5 x^{3}+10 x^{7}$	ading coefficient of c) $4 x^{2}-3 x y+16 y^{2}$ d) $4 x^{6}+6 x^{4}+8 x^{8}-10 x^{2}+20$
$\begin{aligned} & \mathrm{I} \\ & \mathrm{n} \\ & \mathrm{~s} \\ & \mathrm{t} \\ & \mathrm{r} \\ & \mathrm{u} \\ & \mathrm{c} \end{aligned}$	Example 2: Value of a function using Direct Substitution $f(x)=2 x^{4}-8 x^{2}+5 x-7 \text { when } x=3$ Solution:	Example 3: Value of a function using Synthetic Substitution $f(x)=2 x^{4}-8 x^{2}+5 x-7 \text { when } x=3$ Solution:
Y o u r	Your Turn 2: Use direct substitution If $f(x)=2 x^{2}-3 x+1$ a) $f(-4)$	Your Turn 4: Using Synthetic Substitution. Find $\boldsymbol{f}(\mathbf{2})$ a) $3 x^{2}-2 x^{4}-7+x^{3}$
	Your Turn 3: Use direct substitution If $f(x)=x^{2}-4 x-5$ b) $f\left(a^{2}-1\right)$	Your Turn 5: Using Synthetic Substitution. Find $\boldsymbol{f}(-5)$ b) $100-5 \mathrm{x}^{3}+10 \mathrm{x}^{4}$

. describe the end behavior,

- determine whether it represents an Odd-degree or an even-degree function.
- state the number of real zeros.

$\lim _{x \rightarrow-\infty} f(x)=$

$\lim _{x \rightarrow+\infty} f(x)=$

$\lim _{x \rightarrow-\infty} f(x)=$

$\lim f(x)=$
$x \rightarrow-\infty$
$\lim _{x \rightarrow+\infty} \mathrm{f}(\mathrm{x})=$

Closure 5.1

1. Give the degree and leading coefficient of each polynomial in one variable. degree leading coefficient
a. $10 x^{3}+3 x^{2}-x+7$
b. $7 y^{2}-2 y^{5}+y-4 y^{3}$ \qquad
\qquad
c. 100

Warm-up 5.1

1. State the degree and leading coefficient of $-4 x^{5}+2 x^{3}-6$.

Find $p(3)$ and $p(-5)$ for each function.
2. $p(x)=12-x^{2}$

$$
\mathbf{p}(3)=\quad \mathbf{p}(-5)=
$$

3. $p(x)=x^{3}-10 x+40$

$$
\mathrm{p}(\mathbf{3})=
$$

$$
p(-5)=
$$

4. If $p(x)=x^{2}-3 x+4$, find $p(x+2)$.
5. Determine whether the statement is always, sometimes, or never true.
A polynomial of degree three will intersect the x-axis three times.

ALGEBRA 2A
Lesson: 5.2

Name: \qquad
Date: \qquad

Graphing Polynomial Functions

0 b j e c	I can graph polynomial functions and locate their real zeros I can find the maxima and minima of polynomial functions
V o c a b u l a r r y	We have learned how to graph functions with the following degrees: 0 Example: $f(x)=2$ horizontal line 1 Example: $f(x)=2 x-3$ line 2 Example: $f(x)=x^{2}+2 x-3 \quad$ parabola How do you graph polynomial functions with degrees higher than 2? We'll make a table of values, then graph... Graphs of Polynomial Functions: - are continuous (there are no breaks) - have smooth turns - with degree n, have at most $\boldsymbol{n} \mathbf{- 1}$ turns - Follows end behavior according to \boldsymbol{n} (even or odd) and to $\boldsymbol{a}_{\boldsymbol{n}}$ (positive or negative).

ALGEBRA 2A
Lesson: 5.3

Name: \qquad
Date: \qquad
Solving Equations by using Quadratic Techniques

O b j e c t	I can write expressions in quadratic formI can use quadratic techniques to solve equations	
V o c a b u l a a	Quadratic Form:	Quadratic Formula:
I n s t r u c c t i o n	Example 1: Write the given expression in quadratic form, if possible. $2 x^{6}+x^{3}+9$	Example 2: Write the given expression in quadratic form, if possible. $7 x^{10}+6$

$\begin{array}{\|l\|l} \hline \mathrm{I} \\ \mathrm{n} \\ \mathrm{~s} \\ \mathrm{t} \\ \mathrm{r} \\ \mathrm{u} \\ \mathrm{c} \\ \mathrm{t} \\ \mathrm{i} \\ \mathrm{o} \\ \mathrm{n} \end{array}$	Example 3: Write the given expression in quadratic form, if possible. $x^{4}+2 x^{3}-1$	Example 4: Write the given expression in quadratic form, if possible. $x^{\frac{2}{3}}+2 x^{\frac{1}{3}}-4$
	In your own words: What is necessary for an expression to be written in quadratic form?	
$\begin{array}{\|l} \hline \mathrm{Y} \\ \mathrm{o} \\ \mathrm{u} \\ \mathrm{r} \\ \\ \mathrm{~T} \\ \mathrm{u} \\ \mathrm{r} \end{array}$	Your Turn 1: Write each expression in a) $2 x^{4}+x^{2}+3$ c) $x^{6}+x^{4}+1$	adratic form, if possible. b) $\mathrm{x}^{12}+5$ d) $x-2 x^{1 / 2}+3$

ALGEBRA 2A
Lesson: 5.4

Name: \qquad
Date: \qquad

O b j e c t	I can determine whether a binomial is a factor of a polynomial by using synthetic substitution
$\begin{aligned} & \mathrm{R} \\ & \mathrm{e} \\ & \mathrm{v} \\ & \mathrm{i} \\ & \mathrm{e} \\ & \mathrm{n} \end{aligned}$	Use synthetic division: Example 1: $\quad\left(2 x^{2}+3 x-4\right) \div(x-2)$ Example 2: $\quad\left(p^{3}-6\right) \div(p-1)$

$\left.\begin{array}{|l|l|}\hline \text { Example 4: } \\ \text { Given that }(x+2) \text { is a factor of } f(x) \text {, find the remaining factors of the polynomial } \\ \qquad f(x)=x^{3}-13 x^{2}+24 x+108 \\ \text { Gour Turn 2: } \\ \text { Given a polynomial and one of its factors, find the remaining factors of the } \\ \text { polynomial. Some factors may not be binomials. } \\ \text { 1. } x^{3}+x^{2}-10 x+8 ; x-2\end{array}\right]$

ALGEBRA 2A
Lesson: 5.5

Name: \qquad

Roots and Zeros

Example 1: Find all the zeros of. $f(x)=x^{3}+x^{2}+9 x+9$
Step 1: Try some possible zeros by using synthetic substitution: you may cheat with Graph.Calc.!

Step 2: Once you get a polynomial with degree 2 you can solve the quadratic equation!

Step 3: Give the Answer: Zeros are
Example 2: Find all the zeros of $f(x)=x^{4}-21 x^{2}+80$
Step 1: Try some possible zeros by using synthetic substitution: you may cheat with Graph.Calc.!

Try another zero until you get a depressed polynomial with degree 2.

Step 2: Once you get a polynomial with degree 2 you can solve the quadratic equation!

Step 3: Give the Answer: Zeros are

Your Turn 1: Find all the zeros of $f(x)=x^{4}-3 x^{3}+21 x^{2}-75 x-100$ Step 1:

Step 2:

Step 3: Answer \qquad

Example 3: Write a polynomial function of least degree with integer coefficients whose zeros include $4 \& 7 i$ \qquad (its conjugate)

Remember:

- Imaginary roots always come in pairs!!!
- If p \& q are roots of an equation, then ($x-p$) and ($x-q$) are factors!!!

So, because there are \qquad zeros, the least degree will be: \qquad . And we get the polynomial function with the least degree by multiplying:

Use FOIL or distributive property.
Hint: Drawing the arrows may help you to avoid mistakes!
Simplify by combining like terms.
Remember: $\boldsymbol{i}^{2}=\mathbf{- 1}$

Answer:

Your Turn 2: Write a polynomial functions of least degree with integer coefficients whose zeros include $2 \& 4 i$. Which one is missing? \qquad
So, because there are \qquad zeros, the least degree will be: \qquad . And we get the polynomial function with the least degree by multiplying:

Use FOIL or distributive property.

Simplify by combining like terms.

Answer:

ALGEBRA 2A
Lesson: 5.6

Name: \qquad
Date: \qquad

Operations on Functions

O b j e	I can find the sum, difference, product, and quotient of functions. I can find the composition of functions.
	Arithmetic Operations
V o c	Sum $(f+g)(x)=f(x)+g(x)$ Operations with Functions Difference $(f-g)(x)=f(x)-g(x)$ Product $(f \cdot g)(x)=f(x) \cdot g(x)$ Quotient $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0$
u l a r y	Composition of Functions There is a 40% off sale at Old Navy and as an employee you receive a 10% discount, how much will you pay on a $\$ 299$ jacket? You do not get 50\% off... ...this is an example of a composite function. You will pay 90% of the cost (10\% discount) after you pay 60% (40\% discount). The two functions look like this... $f(x)=0.9 x \quad g(x)=0.6 x$ We can put these together in a composite function that looks like this... $\begin{gathered} f(g(x)) \\ \text { " } f \text { of } g \text { of } x " \end{gathered}$

\begin{tabular}{|c|c|}
\hline \& \begin{tabular}{l}
Example 1: \\
restriction: \(g(x) \neq 0\) because:
\end{tabular} \\
\hline \& Your Turn 1: \\
\hline O
u
r

T
u
r
n \& Don't forget the restriction since the denominator cannot ever be equal to ____

\hline
\end{tabular}

