Learning Targets:

Upit 5: Polypomials Functions

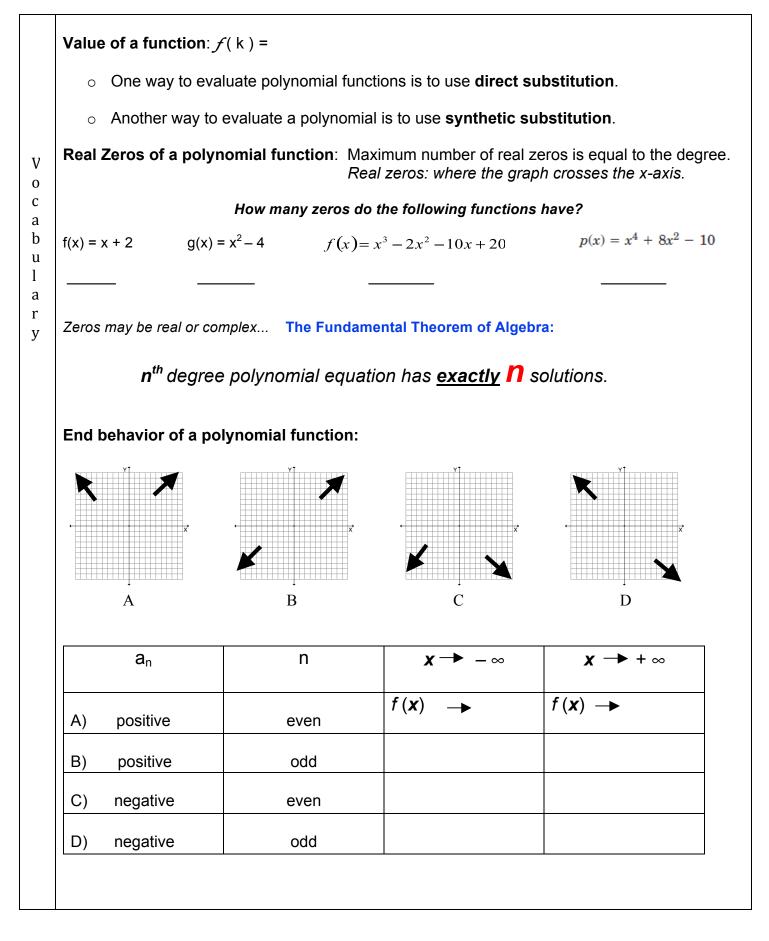
$\bigcirc 1316 \bigcirc . \downarrow \bigcirc 0 \bigcirc 1301301301405 \ \downarrow \bigcirc 1300135$		
Lesson	Assignme	ent ,
5.1 Polynomial Functions		
Learning Targets:	Worksheet 5.1	
 I can evaluate polynomial functions. 		
• I can identify general shapes of graphs of polynomials functions.		
5.2 Graphing Polynomial Functions		
Learning Targets:	Worksheet 5.2	
• I can graph polynomial functions and locate their real zeros.		
• I can find the maxima and minima of polynomial functions.		
5.3 Solving Equations Using Quadratic Techniques		
Learning Targets:	Worksheet 5.3	
 I can write expressions in quadratic form. 		
radical form, and vice versa.		
 I can use quadratic techniques to solve equations. 		
5.4 The Remainder and Factor Theorems		
Learning Targets:	Worksheet 5.4	
 I can evaluate functions using synthetic substitution. 		
• I can determine whether a binomial is a factor of a polynomial by		
using synthetic substitution.		
5.5 Roots and Zeros		
Learning Targets:	Worksheet 5.5	
 I can determine the number and type of roots for a polynomial equation 	ti	
 I can find the zeros of a polynomial function. 		
5.6 Operations on Functions		
Learning Targets:	Worksheet 5.6	
• I can find the sum, difference, product, and quotient of functions.		
 I can find the composition of functions. 		
Unit 5: Review		
	Need	
		eminar:
	and a second	uesday and Thursday
		. ,
	J	

Name: _____

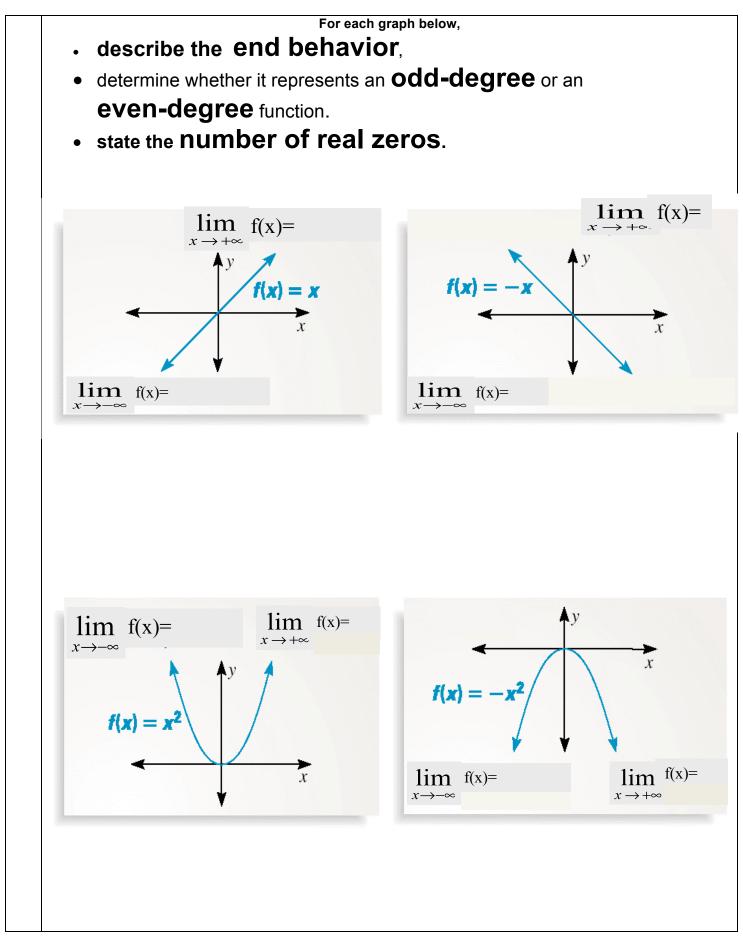
Date: _____

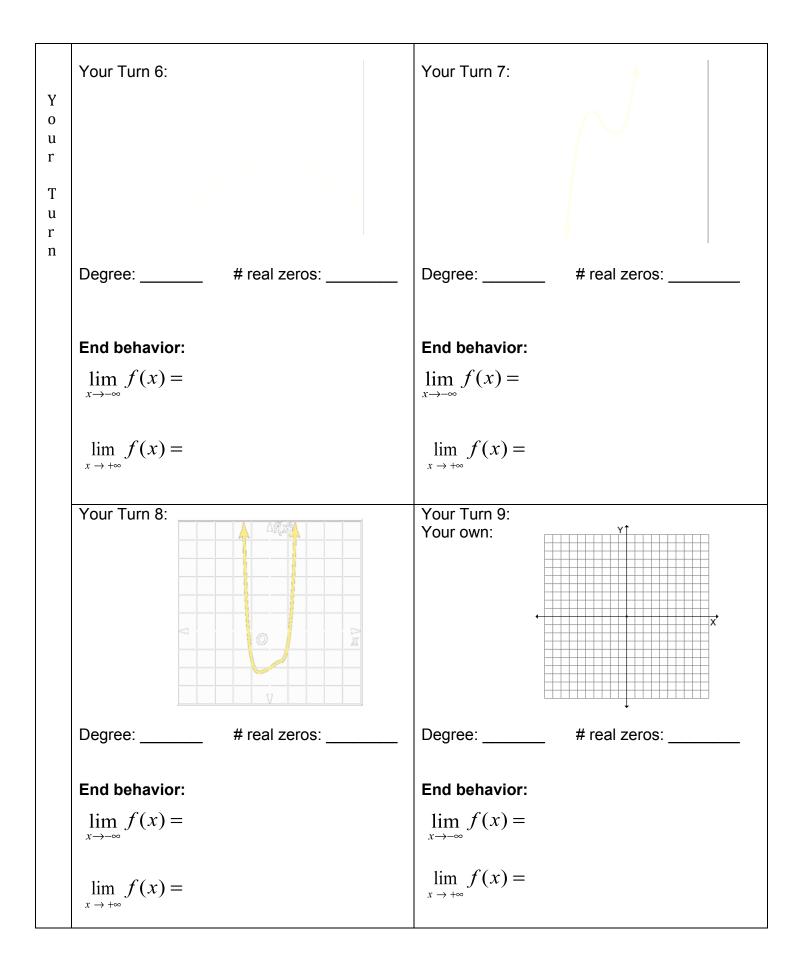
Polynomial functions

	ate polynomial ify general shap	functions bes of graphs of polynomial functions
-	nction: only one	
		$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
a ₀ :		
All the exponents are numbers. A polynomial function is in standard form if its terms are written in descending order of exponents from left to right.		
A polynomial	function is in	standard form if its terms are
A polynomial	function is in	standard form if its terms are
A polynomial written in des	function is in cending order o	standard form if its terms are of exponents from left to right.
A polynomial written in des	function is in cending order o	standard form if its terms are of exponents from left to right. Standard Form
A polynomial written in des	function is in cending order o	standard form if its terms are of exponents from left to right. Standard Form $f(x) = a_0$
A polynomial written in des	function is in cending order o	standard form if its terms are of exponents from left to right.Standard Form $f(x) = a_0$ $f(x) = a_1x + a_0$



	Example 1: Decide whether the function is a standard form and State its degre	polynomial function . If it is, write the function in e , type and leading coefficient .
I n s	1. $f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^2 - 3\mathbf{x}^4 - 7$	3. $f(\mathbf{x}) = \mathbf{x}^3 + 3^x$
t r	2. $f(\mathbf{x}) = 6\mathbf{x}^2 + 2\mathbf{x}^{-1} + \mathbf{x}$	4. $f(\mathbf{x}) = -0.5 \mathbf{x} + \pi \mathbf{x}^2 - \sqrt{2}$
	Your Turn 1: What are the degree and le	eading coefficient of
Y o	a) $3x^2 - 2x^4 - 7 + x^3$	c) $4x^2 - 3xy + 16y^2$
u r	b) $100 - 5x^3 + 10x^7$	d) $4x^6 + 6x^4 + 8x^8 - 10x^2 + 20$
	Example 2:	Example 3:
Ι	Value of a function using Direct Substitution	Value of a function using Synthetic Substitution
n	Direct Substitution	Synthetic Substitution
s t	$f(\mathbf{x}) = 2 \mathbf{x}^4 - 8 \mathbf{x}^2 + 5 \mathbf{x} - 7$ when $\mathbf{x} = 3$.	$f(\mathbf{x}) = 2 \mathbf{x}^4 - 8 \mathbf{x}^2 + 5 \mathbf{x} - 7$ when $\mathbf{x} = 3$.
r u c	Solution:	Solution:
	Your Turn 2: Use direct substitution	Your Turn 4: Using Synthetic Substitution.
Y o	If $f(x) = 2x^2 - 3x + 1$	Find f(2)
u r	a) f(-4)	a) $3x^2 - 2x^4 - 7 + x^3$
Т		
	Your Turn 3: Use direct substitution	Your Turn 5: Using Synthetic Substitution.
	$ f f(y) - y^2 dy = 5$	Find f(-5)
	If $f(x) = x^2 - 4x - 5$	b) $100 - 5x^3 + 10x^4$
	b) f(a²-1)	





Closure 5.1

1. Give the degree and leading coefficient of each polynomial in one variable.

	degree	leading coefficient
a. $10x^3 + 3x^2 - x + 7$		
b. $7y^2 - 2y^5 + y - 4y^3$		
c. 100		

Warm-up 5.1

1. State the degree and leading coefficient of $-4x^5 + 2x^3 - 6$.

Find p(3) and p(-5) for each function.

2. $p(x) = 12 - x^2$ p(3) = p(-5) =

3.
$$p(x) = x^3 - 10x + 40$$

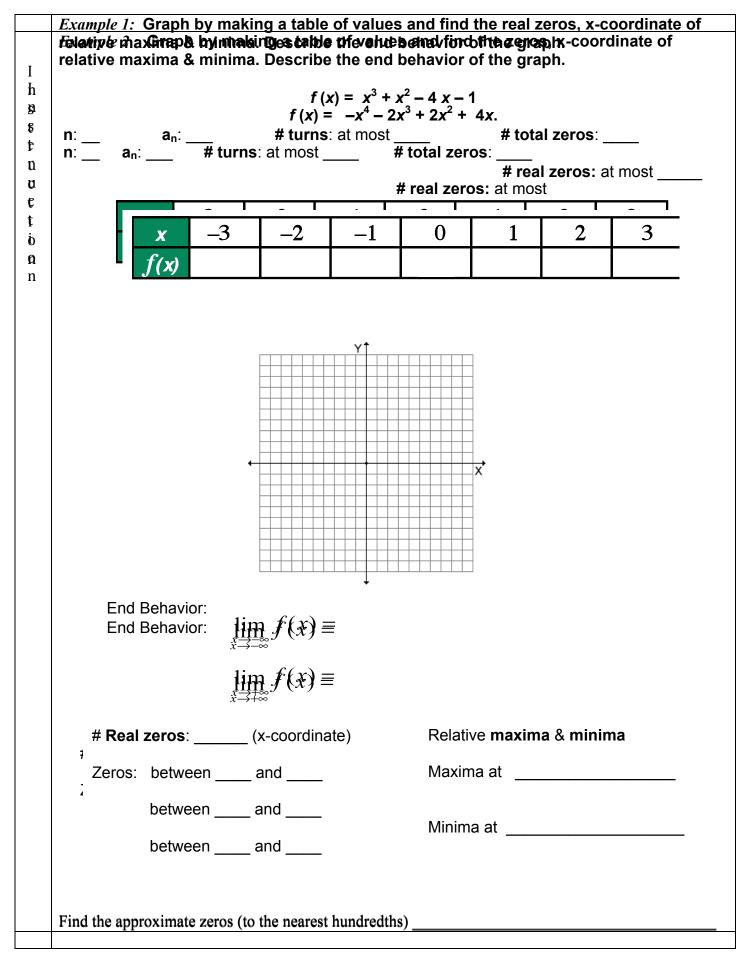
- p(3) = p(-5) =
- 4. If $p(x) = x^2 3x + 4$, find p(x + 2).
- Determine whether the statement is always, sometimes, or never true.
 A polynomial of degree three will intersect the x-axis three times.

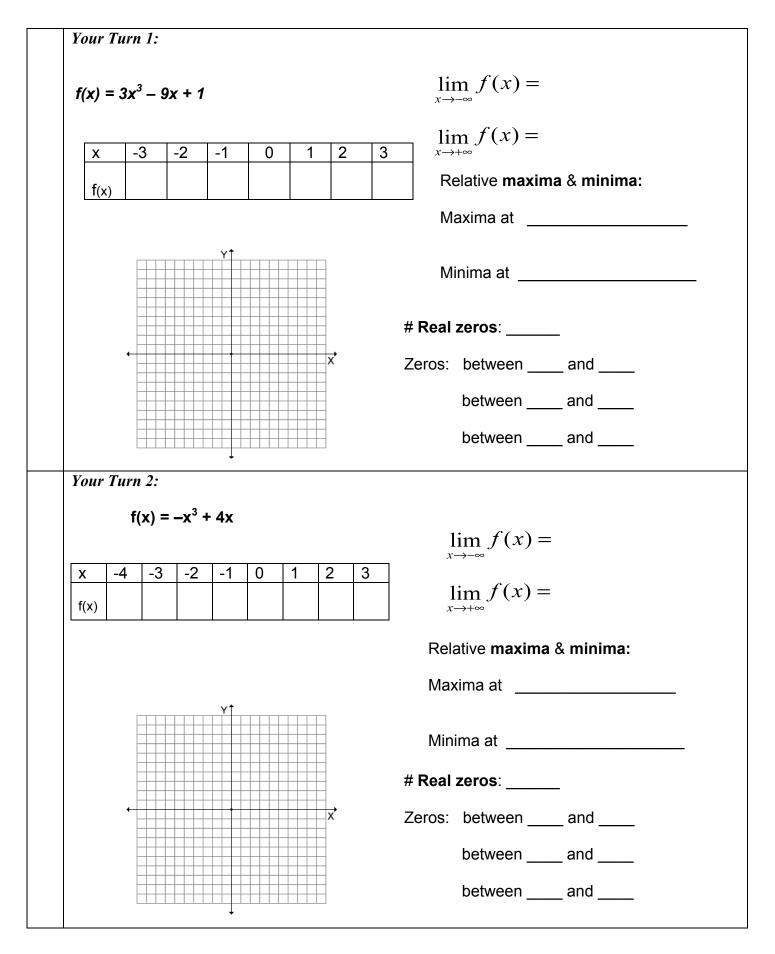
Name:

Date: _____

Graphing Polynomial Functions

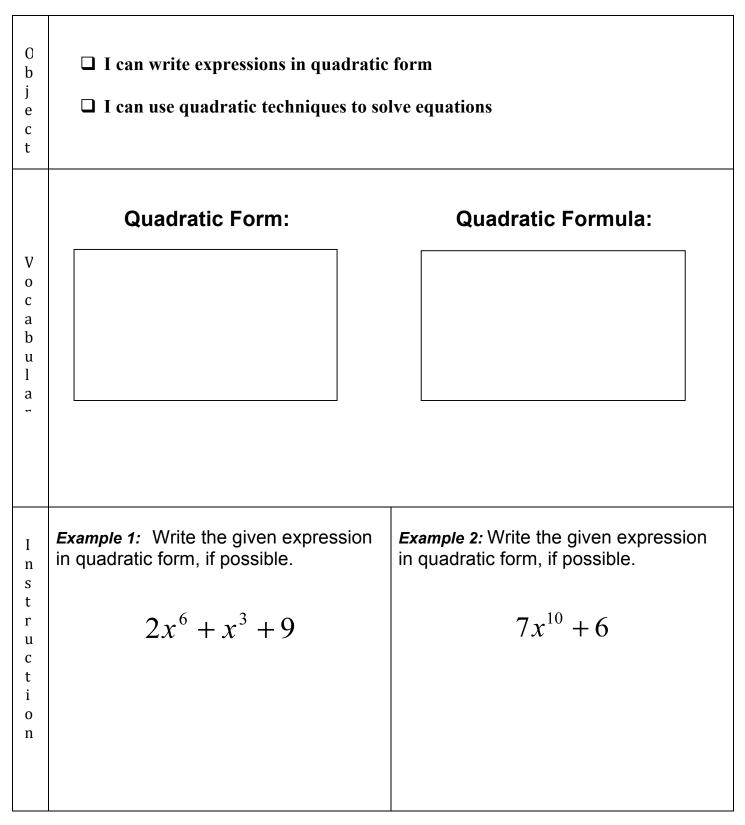
0 b j c	 I can graph polynomial functions and locate their real zeros I can find the maxima and minima of polynomial functions 		
	We have learned how to graph functions with the following degrees:		
	0 $Example: f(x) = 2$ horizontal line		
V o	1 Example: $f(x) = 2x - 3$ line		
c a	2 Example: $f(x) = x^2 + 2x - 3$ parabola		
b u	How do you graph polynomial functions with degrees higher than 2?		
l a	We'll make a table of values, then graph		
r y	Graphs of Polynomial Functions:		
-	are continuous (there are no breaks)		
	have smooth turns		
	 with degree n, have at most n – 1 turns 		
	• Follows end behavior according to n (even or odd) and to a_n (positive or negative).		





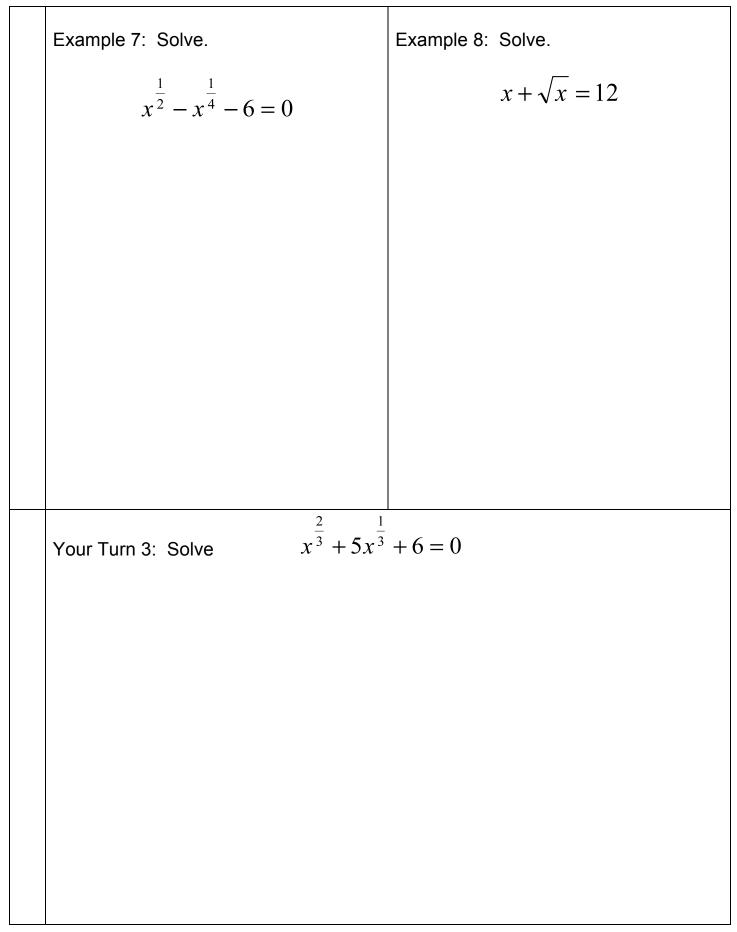
Name: _____ Date: _____

Solving Equations by using Quadratic Techniques



In
n
st
r
u
c
t
i
o
nExample 3: Write the given expression
in quadratic form, if possible.Example 4: Write the given expression
in quadratic form, if possible.
$$x^4 + 2x^3 - 1$$
 $x^2 + 2x^3 - 4$ $x^{\frac{2}{3}} + 2x^{\frac{1}{3}} - 4$ In your own words: What is necessary for an expression to be written in
quadratic form?Your Turn 1: Write each expression in quadratic form, if possible.a) $2x^4 + x^2 + 3$ b) $x^{12} + 5$ c) $x^6 + x^4 + 1$ d) $x - 2x^{1/2} + 3$

	Example 5: Solve:	$x^4 - 29x^2 + 100 = 0$
	Your Turn 2: Solve	
Y o u r	$x^4 - 10x^2 + 9 = 0$	
T u r		
n		



Date: _____

The Remainder and Factor Theorems

O b j c t	I can determine whether a binomial is a factor of a polynomial by using synthetic substitution
	Use synthetic division:
	Example 1: $(2x^2 + 3x - 4) \div (x - 2)$
R e v i e w	Example 2: $(p^3 - 6) \div (p - 1)$

Your Turn 1:
$(2x^3 - 7x^2 - 8x + 16) \div (x - 4)$
Factor Theorem
The binomial $(x - a)$ is a factor of the polynomial $f(x)$ if and only if $f(a) = 0$.
This means that the remainder of the synthetic division or long division is
Example 3:
Show that x+5 is a factor of $x^3 + 2x^2 - 13x + 10$. Then find the remaining factors of the polynomial.

Example 4: Given that (x+2) is a factor of f(x), find the remaining factors of the polynomial $f(x) = x^3 - 13x^2 + 24x + 108$ Your Turn 2: Given a polynomial and one of its factors, find the remaining factors of the polynomial. Some factors may not be binomials. 2. $x^3 - 4x^2 - 11x + 30; x + 3$ 1. $x^3 + x^2 - 10x + 8; x - 2$

Name: _____

Date:

Roots and Zeros

O b j c t	I can find ex		naginary) of a polynomial function he graphing calculator, synthetic substitution,
I n t r u	 c is a zero of the (x - c) is a facto c is a root or solt If c is real, then (c, 	e polynomial function $f(x)$ r of the polynomial $f(x)$ ution of the polynomial , 0) is an intercept of th). lequation $f(x) = 0$. legraph of $f(x)$. f degree <i>n</i> with complex coefficients has
c t i o n	-	function with real coefficients	mbers with $b \neq 0$. If $a + bi$ is a zero of a polynomial a, then $a - bi$ is also a zero of the function. 5! A polynomial function may have or zeros.
	Examples:	& & &	(its conjugate) (its conjugate) (its conjugate)

Example 1: Find all the zeros of. $f(x) = x^3 + x^2 + 9x + 9$
Step 1: Try some possible zeros by using synthetic substitution : <i>you may</i> <u>cheat</u> with Graph.Calc.!
Step 2: Once you get a polynomial with degree 2 you can solve the quadratic equation !
Step 3: Give the Answer: Zeros are
Example 2: Find all the zeros of $f(x) = x^4 - 21x^2 + 80$
Step 1: Try some possible zeros by using synthetic substitution : <i>you may</i> <u>cheat</u> with Graph.Calc.!
Try another zero until you get a depressed polynomial with degree 2.
Step 2: Once you get a polynomial with degree 2 you can solve the quadratic
equation!
Step 3: Give the Answer: Zeros are

Your Turn 1 : Find all the zeros of $f(x) = x^4 - 3x^3 + 21x^2 - 75x - 100$
Step 1:
Step 2:
Step 3: Answer
Example 3: Write a polynomial function of least degree with integer coefficients whose zeros include $4 \& 7i$ — (its conjugate)
Remember: Imaginary roots always come in pairs!!! If p & q are roots of an equation, then (x-p) and (x-q) are factors!!!
So, because there are zeros, the least degree will be: And we get the polynomial function with the least degree by multiplying:
Use FOIL or distributive property. <i>Hint: Drawing the arrows may help you to avoid mistakes!</i>
Simplify by combining like terms.
Remember: <i>i</i> ² = -1
Answer:

Your Turn 2: Write a polynomial functions of least degree with integer coefficients whose zeros include $2 \& 4i$. <i>Which one is missing?</i>
So, because there are zeros, the least degree will be: And we get the polynomial function with the least degree by multiplying:
Use FOIL or distributive property.
Simplify by combining like terms.
Answer:

Name: _____

Date:

Operations on Functions

0 □ I can find the sum, difference, product, and quotient of functions. b j □ I can find the composition of functions. е **Arithmetic Operations** Sum (f+g)(x) = f(x) + g(x)Difference (f - g)(x) = f(x) - g(x)Product $(f \cdot g)(x) = f(x) \cdot g(x)$ **Operations with Functions** V $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$ 0 Quotient С а b **Composition of Functions** u 1 There is a 40% off sale at Old Navy and as an employee you receive a 10% discount, а how much will you pay on a \$299 jacket? r у You do not get 50% off... ...this is an example of a composite function. You will pay 90% of the cost (10% discount) after you pay 60% (40% discount). The two functions look like this... f(x) = 0.9x q(x) = 0.6xWe can put these together in a composite function that looks like this... f(g(x))"f of g of x"

	Example 1:
I n s t r u c t i o n	
	restriction: $g(x) \neq 0$ because:
	Your Turn 1:
Y o u r T u r n	Don't forget the restriction since the denominator cannot ever be equal to!

```
Example 2:
I
     Find [g \circ h](x) and [h \circ g](x) for g(x) = 3x - 4 and h(x) = x^2 - 1.
n
S
t
    [g \circ h](x) = g[h(x)]
                                                                [h \circ g](x) = h[g(x)]
r
u
С
t
i
0
    Example 3:
n
    If f(x) = x^2 - 5 and g(x) = 3x^2 + 1
                                                                g[f(2)]
     find
            f[g(2)]
                                                         find
    Your Turn 2:
     Find [f \circ g](x) and [g \circ f](x).
    f(x) = 2x + 7; g(x) = -5x - 1
Y
0
u
r
Т
u
r
    Your Turn 3:
n
     Find [f \circ g](x) and [g \circ f](x).
    f(x) = x^2 - 1; g(x) = -4x^2
```