## Unit 5: Transformations

### 5.1 Reflections



| (K.Ir_nqeso $\Lambda$ ) uo!pon.!suI | Term/Concept | Definition/Example | Picture |
| :---: | :---: | :---: | :---: |
|  | Reflection | A reflection is a transformation representing a $\qquad$ of a figure. |  |
|  | Notations for reflections | $\qquad$ means, "Reflect ABCD over line n" |  |

## Example 1:

Draw $r_{m}(\triangle S U N)$. (Reflect $\triangle S U N$ over line $m$.)


Based on your drawing, answer the following questions:

1. Draw a line from $N$ to $N^{\prime}$. What is the relationship between $\overline{N N}$ and $m$ ?
2. Measure the distance from $N$ to line $m$ and $N^{\prime}$ to line $m$. What do you notice?
3. The orientation of $\triangle S U N$ is counter-clockwise. What is the orientation of $\Delta S^{\prime} U^{\prime} N^{\prime}$ ?

## Example 2:

Draw $r_{n}(A B C D)$.


Based on the drawing above, answer the following questions:

1. Measure $\angle A$ and $\angle A^{\prime}$. What do you notice?
2. In the pre-image, $F$ is between $A$ and $B$. Where is $F^{\prime}$ in your image?
3. $A, F$, and $B$ are collinear in the pre-image. Which points are collinear in your image?
4. Find the distance between $A$ and $D$. How does it compare to $A^{\prime} D^{\prime}$ '?

Geometry A: Unit 5

## Congruence Transformation (Isometry):

A transformation that is a $\qquad$
ABCD Theorem: All congruence transformations preserve the following properties:

A . $\mathrm{B}-$

C -

D -

## Example 3:

Graph $\triangle C A T$ with vertices $C(-2,5), A(1,-2)$, $T(3,4)$. Draw $r_{x \text {-axis }}(\Delta C A T)$ and record the coordinates of the image.


Example 4:
$\Delta M N P$ has vertices $M(4,4), N(5,1), P(1,2)$.
Draw $r_{x=2}(\Delta M N P)$ and record the coordinates of the image.


## Your turn:

$\Delta M N P$ has vertices $M(4,4), N(5,1), P(1,2)$.
Draw $r_{y=-1}(\Delta M N P)$ and record the coordinates of the image.


### 5.2 Translations




## Example 3:

Identify the translation in both words and symbols that moved each figure.
a. figure $1 \rightarrow$ figure 3
words: $\qquad$
symbols: $\qquad$
b. figure $3 \rightarrow$ figure 2

words: $\qquad$
symbols: $\qquad$
c. figure $4 \rightarrow$ figure 1
words: $\qquad$
symbols: $\qquad$

Geometry A: Unit 5

|  | Term/Concept | Definition/Example | Picture |
| :---: | :---: | :---: | :---: |
|  | Composite of reflections | If a point $P$ is reflected over line $n$, and then $P^{\prime}$ is reflected over line $m$, we can write this as a composite of the reflections: $\qquad$ or $\qquad$ |  |
|  | Translation by Repeated Reflections | A translation by repeated reflections is a transformation in which a figure is reflected twice over $\qquad$ $r_{n} \circ r_{m}(\Delta A B C)$ is a translation only if lines $m$ and $n$ are $\qquad$ . |  |

## Example 5:

Draw $r_{n}{ }^{\circ} r_{m}(\triangle A B C) . \quad$ (Reflect $\triangle A B C$ over line $m$ and then over line $n$ )


Based on the figures above, answer the following questions:

1. Measure the distance from $B$ to $B "$. $\qquad$
2. Measure the "dashed" line from $m$ to $n$. $\qquad$
3. What is the relationship between the two distances? $\qquad$
4. $\triangle A B C$ has a counter-clockwise orientation. What is the orientation of $\triangle A$ " $B$ "' $C^{\prime \prime}$ ?

Geometry A: Unit 5

|  | Term/Concept | Definition/Example |
| :--- | :--- | :--- |
| Magnitude of a <br> Translation | O The magnitude of a translation is the |  |
| Example 6: <br> Translate $\triangle A B C 4 \mathrm{~cm}$ by adding a second reflecting line to the figure. <br> point and its image. |  |  |

### 5.3 Rotations



Geometry A: Unit 5
Instruction
Example 1:
Draw R-90$(\triangle A B C) . \triangle A B C$ has vertices $A(-2,-4), B(-1,3)$, and $C(2,1)$. Then state the coordinates of the image of $\triangle A B C$.


$$
\begin{aligned}
& A^{\prime}(, \quad) \\
& B^{\prime}(, \quad) \\
& C^{\prime}(, \quad)
\end{aligned}
$$

## Example 2:

Draw $\mathrm{R}_{90^{\circ}}(\triangle A B C) . \triangle A B C$ has vertices $A(-2,-4), B(-1,3)$, and $C(2,1)$. Then state the coordinates of the image of $\triangle A B C$.

$A^{\prime}(\quad, \quad)$
$B^{\prime}(\quad, \quad)$
$C^{\prime}(\quad, \quad)$

## Rotation Rules:

R- $90^{\circ}$ maps the point $(x, y) \rightarrow$ $\qquad$
$\mathrm{R}_{90^{\circ}}$ maps the point $(x, y) \rightarrow$ $\qquad$

## Your Turn:

Draw $\triangle D E F$ with vertices $D(-3,-1), E(2,-4)$, and $F(1,2)$. Draw R-90 $(\Delta D E F)$. Then state the coordinates of the image of $\triangle D E F$.

|  |  |  | Y/ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  | 0 |  |  |  |  | x |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  | $\downarrow$ |  |  |  |  |

$$
\left.\begin{array}{ll}
D^{\prime}( & ,
\end{array}\right)
$$

## Using Repeated Reflections to Rotate Figures




### 5.4 Glide Reflections



## Your turn:

Repeat example 2, but reverse the order of the transformations. Draw $T_{(3,0)}{ }^{\circ} r_{x-a x i s}$.


$$
\begin{aligned}
& A^{\prime \prime}(, \quad) \\
& B^{\prime \prime}(, \quad) \\
& C^{\prime \prime}(, \quad)
\end{aligned}
$$

Does reversing the order of the transformations change the image?

## Example 3:

Draw $r_{k}{ }^{\circ} r_{n}{ }^{\circ} r_{m}(\Delta A B C)$.

a. What type of transformation results from this composition of reflections?
b. Which of the following are preserved?

Angle measure? $\qquad$ Betweenness? $\qquad$ Collinearity? $\qquad$ Distance? $\qquad$
c. What is the orientation of the preimage ? $\qquad$
d. What is the orientation of the final image ? $\qquad$

## Example 4:

Describe the composition of transformation in each figure below in words and using composite notation.
a.


Words:
Notation:
b.


Words:

Notation:

Your turn:
a.


Words:
Words:

Notation:

## Example 5:

MC Escher is one of the most famous graphic artists. In his lifetime (1898-1972) he made over 2000 sketches, and two of his works are shown below.


Using your colored pencils,
a. Shade in red an example of a rotation.
b. Shade in blue an example of a translation.
c. Shade in green an example of a glide reflection.

