Name _____ Assignment

Find the inverse of each relation.

2.
$$\{(-5, -4), (1, 2), (3, 4), (7, 8)\}$$

Find the inverse of each function. Then graph the function and its inverse.

For #6 and 7, use the following information. The Clearys are replacing flooring in their 15 foot by 18 foot kitchen. The new flooring costs \$17.99 per square yard. The formula f(x)=9x converts square yards to square feet.

6. Find the inverse $f^{-1}(x)$. What is the significance of $f^{-1}(x)$ for the Clearys?

7. What will the new flooring cost the Clearys?

Name ____

<u>Assignment</u>

Sketch the graph of each function. Then state the function's domain and range.

Determine whether each function represents exponential growth or decay.

4. $y = 0.3(1.2)^x$ 5. $y = 5\left(\frac{4}{5}\right)^x$ 6. $y = 3(10)^{-x}$

Solve each equation or inequality. Check your solution.

7. $3^{2x-1} = 3^{x+2}$ 8. $2^{3x} = 4^{x+2}$ 9. $3^{2x-1} = \frac{1}{9}$

10.
$$4^{x+1} = 8^{2x+3}$$
 11. $8^{x-2} = \frac{1}{16}$ **12.** $25^{2x} = 125^{x+2}$

Write an exponential function whose graph passes through the given points.

13. (0, 1) and (-1, 3) 14. (0, 4) and (1, 12)

15. (0, 3) and (-1, 6)

16. (0, 5) and (1, 15)

Simplify each expression.

17. $(9^{\sqrt{3}})^{3}$

18. $(x^{\sqrt{2}})^{7}$

19. $5^{2\sqrt{3}} \cdot 5^{4\sqrt{3}}$

20. $x^{3\pi} \div x^{\pi}$

Name _____ Assignment

Write each equation in logarithmic form.

1.
$$2^7 = 128$$
 2. $3^{-4} = \frac{1}{81}$ **3.** $\left(\frac{1}{7}\right)^3 = \frac{1}{343}$

Write each equation in exponential form.

4.
$$\log_{15} 225 = 2$$
 5. $\log_3 \frac{1}{27} = -3$ **6.** $\log_4 32 = \frac{5}{2}$

Evaluate each expression.

7 . $\log_4 64$	8 . $\log_2 64$	9. $\log_{100} 100,000$
------------------------	------------------------	-------------------------

10. $\log_5 625$

11. log₂₇ 81

12. log₂₅ 5

Solve each equation.

13. $\log_2 32 = 3x$ **14.** $\log_3 2x = -2$

15.
$$\log_{2x} 16 = -2$$
 16. $\log_{25} \left(\frac{x}{2} \right) = \frac{1}{2}$

17.
$$\log_4(3x-1) = \log_4(2x+3)$$

18. $\log_8(4x+4)=2$

Graph the function. 10 $x = \log_{10}(y)$

19.
$$x = \log_{1.3}(y)$$

20.
$$x = \log_{0.4}(y)$$

Name _____ Assignment

Solve each equation. Check your solutions.

1. $\log_5 4 + \log_5 2x = \log_5 24$

2. $3\log_4 6 - \log_4 8 = \log_4 x$

3.
$$\frac{1}{2}\log_6 25 + \log_6 x = \log_6 20$$

4. $\log_2 4 - \log_2 (x+3) = \log_2 8$

5.
$$\log_6 2x - \log_6 3 = \log_6 (x-1)$$

6. $2\log_4(x+1) = \log_4(11-x)$

7. $\log_3(c+3) - \log_3(4c-1) = \log_3 5$

8. $\log_5(x+3) - \log_5(2x-1) = 2$

9. $\log_3 d + \log_3 3 = 3$

10. $\log_{10} y - \log_{10} (2 - y) = 0$

11. $\log_2 x + 2\log_2 5 = 0$

12. $\log_2(x+4) - \log_2(x-3) = 3$