Lesson 6.1: Inverse Functions and

Relations

Learning Targets:

I can find the inverse of a function or relation.
 I can determine whether two functions or relations are inverses.

Find Inverses

Inverse Relations	Two relations are inverse relations if and only if whenever one relation contains the element (a, b) , the other relation contains the element (b, a) .	
Property of Inverse	Suppose f and f^{-1} are inverse functions.	
Functions	Then $f(a) = b$ if and only if $f^{-1}(b) = a$.	

<u>Relation</u> – a mapping of input values (x-values) onto output values (y-values).

Here are 4 ways to show the same relation.

Equation:	Table of values:
$y = x^2$	
Mapping:	

Graph:

Is this relation a function?

Inverse relation – just think: switch the x & y-values.

Equation: switch the x and y & solve for y

Table: switch the columns ____

Graph: The reflection of the original graph on the line _____

Mapping: switch the domain & range

Is this relation a function?

Example 1: Find the inverse of the function $f(x) = \frac{2}{5}x - \frac{1}{5}$.

- Step 1: Replace f(x) with **y** in the original equation.
- Step 2: Interchange x and y.
- Step 3: Solve for y.
- Step 4: Replace y with $f^{-1}(x)$ $f^{-1}(x)$ means "f inverse of x"

Find the inverse of each function. Then graph the function and its inverse.

1.
$$f(x) = \frac{2}{3}x - 1$$
 2. $f(x) = 2x - 3$

Algebra 2

How are the two lines (in each graph) related?_

Lesson 6.2: Exponential Functions

Learning Targets:

G^{*} I can graph an exponential function.

O^{*} I can determine if a function is growth or decay.

O^{*} I can write an exponential function given values.

O^{*} I can solve exponential functions.

Example 1

Sketch the graph of $y = 4^x$ and identify its domain and range.

Domain:_____

Range:_____

Example 2

Sketch the graph of $y = 0.7^x$ and identify its domain and range.

Domain	:
Range:	

Example 3 Indicate whether each shows exponential growth or decay.

$$y = 0.7^{x}$$
 $y = \frac{1}{3}(2)^{x}$ $y = 10\left(\frac{2}{5}\right)^{x}$

Example 4 Write an exponential function whose graph passes through the given points.

Example 5 Write an exponential function whose graph passes through the given points.

(0, 7) and (1, 1.4)

Example 6 Write an exponential function whose graph passes through the given points.

(0, 3) and (-1, 6)

Example 7 Write an exponential function whose graph passes through the given points.

(0, -18) and (-2, -2)

Example 8

Simplify the expressions below.

a) $5^{\sqrt{3}} \div 5^{\sqrt{2}}$ b) $(6^{\sqrt{5}})^{\sqrt{6}}$

c)
$$2^{\sqrt{5}} \div 2^{\sqrt{3}}$$
 d) $(7^{\sqrt{3}})^7$

Example 9 Solve the equation.

 $4^{9n-2} = 256$

Example 10 Solve the equation.

$$3^{5x} = 9^{2x-1}$$

Example 11 Solve the equation.

 $2^{3x+1} = 32$

Lesson 6.3: Logarithmic Functions

Learning Targets:

I can convert from logarithmic to exponential form and vice versa.
I can evaluate logarithmic expressions.
I can solve logarithmic equations.
I can graph a logarithmic function.

Definition of Logarithm:

Let b > 0 and $b \ne 1$. Then *n* is the logarithm of m to the base b, written

$$\log_b m = n$$
 if and only if $b^n = m$

<u>Check it out!:</u>	Exponential Form		Logarithmic Form
	$2^4 = 16$	means	
	$2^3 = 8$	means	
	$2^2 = 4$	means	
	$2^1 = 2$	means	
	$2^0 = 1$	means	
	$2^{-1} = \frac{1}{2}$	means	
	$2^{-2} = \frac{1}{4}$	means	

a) $\log_3 9 = 2$ b) $\log_{10} \frac{1}{100} = -2$ c) $\log_9 81 = 2$ d) $\log_3 \frac{1}{9} = -2$

Flower Power Root Rule:

$$b^{\frac{m}{n}} = (\sqrt{b})^n$$

Example:
$$16^{\frac{3}{4}} = ?$$

Example 2:

Convert to logarithmic form.

a) $5^3 = 125$

d)
$$81^{\frac{1}{2}} = 9$$

Example 3:	Evaluate logarithmic expressions.		
a) log ₃ 243	b) $\log_{10} 1000$	c) $\log_9 9^2$	d) $7^{\log_7(x^2-1)}$

Think-Pair-Share!

a)
$$\log_5 5^3$$
 b) $3^{\log_3(x+2)}$

Example 4: Solve logarithmic equations.
a)
$$\log_8 n = \frac{4}{3}$$
 b) $\log_{27} n = \frac{2}{3}$ c) $\log_4 x^2 = \log_4(4x - 3)$ d) $\log_5 x^2 = \log_5(x + 6)$

Example 5: Graph the logarithmic function.

$$x = \log_2(y)$$

Step 1:

Convert the logarithmic form to exponential form.

Step 2: Complete the table of values for the function in *exponential form*.

2	
x	v
3	3
-2	
-1	
0	
1	

Step 3: Find the **inverse** of the coordinates.

X	у

Step 4: Graph the **<u>inverse points</u>** *This is the logarithmic function!*

What is the x-intercept?: _____

 $x = \log_{0.5}(y)$

Example 6: Graph the logarithmic function.

Step 1:

Convert the logarithmic form to exponential form.

Step 2: Complete the table of values for the function in *exponential form*.

Step 3: Find the **inverse** of the coordinates.

Step 4: Graph the **inverse points** *This is the logarithmic function!*

X	У

X	У

What is the x-intercept?: _____

Algebra 2 Your turn! Graph the logarithmic function.

$$x = \log_{1.7}(y)$$

Step 1:

Convert the logarithmic form to exponential form.

Step 2: Complete the table of values

X	у
-2	
-1	
0	
1	
2	

Х у

Step 4: Graph the *inverse points* for the function in *exponential form*. This is the logarithmic function!

What is the x-intercept?: _____

Lesson 6.4: Properties of Logs

Learning Targets:

I can use the product and quotient properties of logs.
I can use the power property of logs.
I can solve equations using properties of logs.

<u>Product Property:</u> $\log_b(x \cdot y) = \log_b x + \log_b y$

Example:

Quotient Property:
$$\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

Example:

Power Property:

$$\log_b(x^n) = n \cdot \log_b x$$

 Example:

Example 1: Solve: $4 \log_2 x - \log_2 5 = \log_2 125$.

Example 2: Solve: $\log_8 x + \log_8 (x - 12) = 2$.

Your Turn: Solve each equation.

a) $2 \log_3 x - 2 \log_3 6 = \log_3 24$

b) $\log_2 x + \log_2 (x - 6) = 4$