Unit 6: Quadrilaterals

6.1 Properties of Parallelograms

	- I can recognize and apply properties of the sides and angles of parallelograms. - I can recognize and apply properties of the diagonals of parallelograms.	
	Term/Concept \quad Definition/Ex	mple \quad Picture
	Parallelogram $\|$$\frac{\text { A parallelogram is a }}{\text { pairs of opposite sides }}$.	here both
	Properties of - Opposite sides are \qquad - Opposite sides are \qquad - Opposite angles are \qquad - Consecutive angles are \qquad - Diagonals \qquad	arallelograms:
	Example 1: Find all the missing side and angle measures in the parallelogram below.	Example 2: If $A B C D$ is a parallelogram, find the values of a, b, and $m \angle B$. $a=$ \qquad $b=$ \qquad $\boldsymbol{m} \boldsymbol{B}=$ \qquad

6.2 Proving a Quadrilateral is a Parallelogram

E E E 2 E	Example 2: Show that quadrilateral $A B C D$ is a parallelogram. Justify your answer. Use the distance formula. Distance between 2 points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ (You must show that both pairs of opposite sides are congruent - that is, you must show that opposite sides have the same length.) $A(-2,3) \quad B(3,2) \quad C(2,-1) \quad D(-3,0)$ $A B C D$ is a parallelogram. Justification \qquad
	Example 3: Show that quadrilateral $A B C D$ is a parallelogram. Justify your answer. Use the midpoint formula. For 2 points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) \quad$ midpoint $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ (You must show that both diagonals bisect each other which can be demonstrated by showing that the midpoint of both diagonals is the same.) $A(-2,3) \quad B(3,2) \quad C(2,-1) \quad D(-3,0)$ $A B C D$ is a parallelogram. Justification \qquad

Example 4:
Determine whether a figure with the following vertices is a parallelogram using any method.
Justify your answer by showing all calculations.
S(-3, -6), $R(2,2), S(-1,6), T(-5,2)$

6.3 Properties of Rectangles

	- I can recognize and apply properties of rec - I can determine whether parallelograms are	ngles. rectangles.
틀를e.…	Term/Concept \quad Definition/Exa	ple Picture
	Definition of a Rectangle A rectangle is a with.	
	Properties of rectangles: - Opposite sides are \qquad - Opposite sides are \qquad - All four angles are \qquad - Opposite angles are \qquad - Consecutive angles are \qquad - Diagonals \qquad - Diagonals \qquad All rectangles are parallelograms, so all of the properties of parallelograms apply to rectangles.	
	Example 1: In rectangle $R S T U, U S=6 x+3$ and $R T=7 x-2$. Find x.	Example 2: $A B C D$ is a rectangle. If $B E=6 y+2$ and $C E=4 y+6$, find y.

Your Turn:
In rectangle $T S R U, T Q=6 x+3$ and $U Q=7 x-2$.

Find the indicated measures. | Example 3: |
| :--- |
| In rectangle $R S T U, m \angle S T R=8 x+3$ and |
| $2 \angle U T R=16 x-9$. Find $m \angle S T R$. |

6.4 Proving a Quadrilateral is a Rectangle

H	- I can recognize the conditions that ensure a quadrilateral is a rectangle. - I can prove that a set of points forms a rectangle in the coordinate plane.

Example 1:

Verify that $A(-3,0), B(-2,3), C(4,1)$, and $D(3,-2)$ are vertices of a rectangle. Justify your answer.
(You must show that all 4 angles are right angles. This can be demonstrated by showing that consecutive sides are perpendicular).

$A B C D$ is a rectangle.
Justification: \qquad

$B G H L$ is / is not a rectangle.
Justification: \qquad .

-	- I can recognize and apply the properties of rhombi. - I can recognize and apply the properties of squares.	
	Term/Concept \quad Definition/E	mple \quad Picture
	Definition of a Rhombus A rhombus is a with	
	- Opposite sides are \qquad - Opposite sides are \qquad - All four sides are \qquad - Opposite angles are \qquad - Consecutive angles are \qquad - Diagonals \qquad - Diagonals \qquad All rhombi are parallelograms, so all of the properties of parallelograms apply to rhombi.	
	Example 1: In rhombus $A B C D, m \angle B A C=32^{\circ}$. Find the measure of each numbered angle. $\begin{array}{ll} m \angle 1= & m \angle 2= \\ m \angle 3= & m \angle 4= \end{array}$	Your turn: $A B C D$ is a rhombus. Suppose $m \angle A B D=60^{\circ}$. Find the measure of each angle. $m \angle A E D=$ \qquad $m \angle B D C=$ \qquad $m \angle A B C=$ \qquad $m \angle B C E=$ \qquad $m \angle D C E=$ \qquad $m \angle D A B=$ \qquad

6.6 Proving that a Quadrilateral is a Rhombus or a Square

	- I can recognize the conditions that ensure a quadrilateral is a rhombus - I can recognize the conditions that ensure a quadrilateral is a square - I can prove that a set of points forms a rhombus or square in the coordinate plane.

$A B C D$ is a (circle all that apply)
Parallelogram Rectangle Rhombus Square

[^0]
6.7 Trapezoids

[^1]| | Example 2:
 $\overline{M N}$ is the median of trapezoid URST. Find the value of x. |
| :---: | :---: |
| | Example 3:
 For trapezoid $D E F G, T$ and U are the midpoints of the legs.
 a. Find $m \angle E$.
 b. Find $m \angle G$. |
| | Your Turn:
 For isosceles trapezoid $H J K L, S$ and T are the midpoints of the legs, and $m \angle K=70^{\circ}$.
 a. Find $H J$.
 b. Find $m \angle L$.
 c. Find $m \angle H$.
 d. Find $m \angle J$. |
| | Example 4:
 In trapezoid $E F G H, J$ and K are midpoints of the legs. Let $\overline{X Y}$ be the median of $E F J K$.
 a. Draw and label $\overline{X Y}$ on the figure.
 b. Find $X Y$.
 c. Suppose $m \angle H=82^{\circ}$. Name all the other angles that measure 82°. |

6.8 Kites and the Quadrilateral Hierarchy

	- I can recognize and apply the properties of kites. - I can use the quadrilateral hierarchy		
-	Term/Concept	Definition/Example	Picture

	Definition of a A kite is a two pairs of Kite congruent.	
	Properties of kites: - Consecutive sides are \qquad - Diagonals are \qquad - Opposite angles not at the ends of the kite are \qquad - The diagonal that intersects the ends of the kite \qquad the other diagonal	
	Example 1: $A B C D$ is a kite with ends B and D. If $A C=24 \mathrm{~cm}$, find the indic $m \angle A E B$	lengths and angle measures. $\angle E A B=$ \qquad

	Example 2 Given ABCD is a kite with ends B and D, solve for x and find all missing side lengths.
	Example 3: Verify that $A(-3,1), B(-2,4), C(1,3)$, and $D(1,-2)$, are vertices of a kite. Justify your answer. $A B C D$ is a kite. Justification: \qquad

Your turn: True or false?
a. A square is always a parallelogram.
b. A parallelogram is always a rectangle.
c. The diagonals of a rhombus are always congruent.
d. A trapezoid always has two congruent angles.
e. In a kite, the diagonals are always perpendicular.

6.9 Constructions of Quadrilaterals

-	- I can construct a parallelogram. - I can construct a rectangle - I can construct a rhombus - I can construct a square

Example 1: Construct a parallelogram (diagonals \qquad

Example 2: Construct a rectangle (diagonals \qquad and \qquad

Example 3: Construct a rhombus (diagonals

 andExample 4: Construct a square (diagonals \qquad and

Example 1: CONSTRUCTING A PARALLELOGRAM

After doing this	Start by drawing two intersecting segments. These will become the diagonals of your parallelogram.
Put the point of your compass where your segments intersect. Set the compass to a width of your choice. Mark that distance from the intersection on each side of one segment.	
Set your compas to a new width. Mark that new distance from the intersection on each side of the other segment.	

Example 2: CONSTRUCTING A RECTANGLE

After doing this
Start by drawing two intersecting segments. These will become the diagonals of your rectangle.
Put the point of your compass where your segments intersect. Set the compass to a width of your choice. Mark that distance from the intersection on each side of one segment.
Keep your compass set to the same width. Mark the distance from the intersection on each side of the other segment.
Mark the points that will be the vertices of your rectangle.
Connect the vertices with your
straightedge.

Example 3: CONSTRUCTING A RHOMBUS

After doing this	Your work should look like this
Start by drawing one segment. This will be one diagonal of your rhombus.	
Use your compass to construct a perpendicular bisector of your segment.	
Use your straightedge to draw in the perpendicular bisector. This is the second diagonal of your rhombus.	

Connect the vertices with your straightedge.	

Example 4: CONSTRUCTING A SQUARE

After doing this	Your work should look like this
Start by drawing one segment. This will be one diagonal of your square.	

[^0]: U0!̣D.ITSUI

 ## Example 2:

 Determine whether the given vertices form a parallelogram, rectangle, rhombus, or square.
 Choose all that apply. Justify your reasoning by showing all your calculations. $Q(-6,-1), R(4,-6), S(2,5), T(-8,10)$

[^1]: !On.IISUI

 ## Example 1:

 $\overline{M N}$ is the median of trapezoid $H J K L$. Find each indicated value.
 a. Find $M N$ if $H J=32$ and $L K=60$

