<u>Unit 6: Quadrilaterals</u>

6 <u>.1 P</u>	roperties of Parallelogr	<u>ams</u>			
Targets	 I can recognize I can recognize 	and apply properties of the and apply properties of the	e sides and angle e diagonals of pa	es of parallelog arallelograms.	grams.
In	Term/Concept	Definition/Ex	ample	-	Picture
struction	Parallelogram	A <u>parallelogram</u> is a w pairs of opposite sides an	where both re		B D
		Properties of	parallelograms	5:	
	• Opposite sides a	are			
	• Opposite sides a	are			/
	• Opposite angles	s are			\square
	• Consecutive any	gles are			\times /
	• Diagonals				
	<i>Example 1:</i> Find all the missing sid in the parallelogram be	le and angle measures low.	Example 2: If $ABCD$ is a b , and $m \angle B$	parallelogram,	find the values of <i>a</i> ,
	6 cm	8 cm	A _{8b°}	2a 112°/2	a = b =
			D	4C	<i>m</i> ∠́ <i>B</i> =

6.2 Proving a Quadrilateral is a Parallelogram

Targets • I can recognize the conditions that ensure a quadrilateral is a parallelogram. • I can prove that a set of points forms a parallelogram in the coordinate plane. **Term/Concept Definition/Example** Picture Instruction y i Two segments are **parallel** if they have the same _____. **Parallel Segments** 0 X Example 1: Quadrilateral ABCD has vertices A(-2, 3) = B(3, 2) = C(2, -1) = D(-3, 0). Show that quadrilateral *ABCD* is a parallelogram. Justify your answer. Use the **slope formula**. Α For 2 points (x_1, y_1) and (x_2, y_2) slope = $\frac{y_2 - y_1}{x_2 - x_1}$ В 0 (You must show that both pairs of opposite sides are parallel – that is, D x you must show that opposite sides have the <u>same slope</u>.) Ċ *ABCD* is a parallelogram. Justification

Instruction	Example 2: Show that quadrilateral <i>ABCD</i> is a parallelogram. Justify your answer. Use the <u>distance formula</u> . Distance between 2 points (x_1, y_1) and $(x_2, y_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ (You must show that both pairs of opposite sides are congruent – that is, you must show that opposite sides have the <u>same length</u> .) A(-2, 3) B(3, 2) C(2, -1) D(-3, 0)
	ABCD is a parallelogram. Justification
	the midpoint of both diagonals is the same.) A(-2, 3) B(3, 2) C(2, -1) D(-3, 0)
	ABCD is a parallelogram.
	Justification

	Example 4:	
n	Determine whether a figure with the following vertice	es is a parallelogram using any method
str	Justify your answer by showing all calculations	es is a paranelogram asing any method.
n.	Justify your answer by showing <u>an</u> calculations.	
cti	$\mathcal{O}(2, \mathcal{O}) \mathbb{P}(2, 2) \mathbb{Q}(1, \mathcal{O}) \mathbb{P}(5, 2)$	ΥŤ
0	Q(-3, -6), R(2, 2), S(-1, 6), I(-5, 2)	
n		
		· · · · · · · · · · · · · · · · · · ·
		·····································
		↓
	OPST is / is not a parallelogram	
	QAST is is interaparaticiogram.	
	Justification	
	Summary: Methods for Proving that a Quadrilate	teral is
	a Parallelogram:	
	1. Show that the opposite sides are	
	using .	
		AB
	(Show and	
	2. Show that the opposite sides are	
	using	C D
	(Show and	_)
	3. Show that the diagonal using	ng
		č –
	·	
	(Show and	
		_/
1		

<u>6.3 Properties of Rectangles</u>

Te	rm/Concept	Definition/Exa	nple	Picture
D	efinition of a Rectangle	A <u>rectangle</u> is a		
		Properties o	of rectangles:	
	 Opposite side 	es are		
	 Opposite side 	es are		
	• All four angle	es are		
	• Opposite ang	les are		
	• Consecutive	angles are		
	Diagonals			
	Diagonals			
All	rectangles are pa	rallelograms, so all of the prop	perties of paralle	lograms apply to rectangles.
Exa In r Find	ectangle <i>RSTU</i> , U at <i>x</i> .	US = 6x + 3 and RT = 7x - 2.	Example 2: ABCD is a recta find y. B A	ngle. If $BE = 6y + 2$ and $CE = 4y$

Targets

• I can recognize the conditions that ensure a quadrilateral is a rectangle.

• I can prove that a set of points forms a rectangle in the coordinate plane.

Term/Concept	Definition/Example	Picture
Perpendicular Segments	Two segments are perpendicular if their are	
<i>Example 1:</i> Verify that <i>A</i> (-3, 0), <i>B</i> (-	2, 3), $C(4, 1)$, and $D(3, -2)$ are vert	ices of a rectangle. Justify your answer.
consecutive sides are pe	erpendicular).	A
<i>ABCD</i> is a rectangle.		
Justification:		

Example 2: Verify that A(-3, 0), B(-2, 3), C(4, 1), and D(3, 0.2) are vertices of a rectangle. Justify your answer. Step 1: Show that the diagonals bisect each other (midpoint formula) Step 2: Show that the diagonals are congruent (distance formula)

Justify your answer by showing <u>all</u> calculations.			v		 	
ictio				-		
				\square		
_						+
	++	++		\vdash		+
						$ \rightarrow $
						*
_						+
		++				+
				Ļ		
BGHL is / is not a rectangle.						
Justification:						

6.5 Properties of Rhombi and Squares

Targets	 I can recogni I can recogni 	ze and apply the properties of ze and apply the properties of	rhombi. squares.	
In	Term/Concept	Definition/Exa	mple	Picture
struction	Definition of a Rhombus	A <u>rhombus</u> is a with		
		Properties	of rhombi:	
	Opposite side	es are		
	Opposite side	es are		
	All four sides	sare		
	Opposite ang	les are		\square
	Consecutive	angles are		
	Diagonals			
	Diagonals			<u>v</u> v
	All rhombi are paral	lelograms, so all of the proper	ties of parallelog	grams apply to rhombi.
	Example 1: In rhombus ABCD, measure of each num $A = 32^{\circ}$ $m \angle 1 = _$ $m \angle 3 = _$ $m \angle 3 = _$	$m \angle BAC = 32^{\circ}$. Find the abbred angle. $B = 12^{\circ}$ $4 = 2^{\circ}$ $22 = 2^{\circ}$ $24 = 2^{\circ}$	Your turn: ABCD is a rho Find the meas $ABCD$ is a rho Find the meas $M \angle AED =$ $m \angle ABC =$ $m \angle DCE =$	bombus. Suppose $m \angle ABD = 60^{\circ}$. Source of each angle. $M \angle BDC = $ $m \angle BCE = $ $m \angle DAB = $

	<i>Example 2:</i> <i>ABCD</i> is a rhombus. EC = 24, find the fol	If $AB = 26$, $BD = 20$, and lowing lengths.	Your turn: ABCD is a rho CD = 4x - 4, f ABCD.	The find the perimeter of C
	$BC = _\BE = _\BE = _\BE$	<i>AE</i> =		
	Example 3: ABCD is a rhombus. AC = 16, find y. B = C	If $AE = 3y - 1$ and	<i>Your turn:</i> <i>ABCD</i> is a rho find the perim	The end $AC = 24$, where $ABCD$.
	A		A	
In	Term/Concept	Definition/Exa	mple	Picture
struction	Definition of a Square	A <u>square</u> is a a a	that a	
		Propertie	es of squares:	
	Opposite side	es are		
	• Opposite side	es are		
	• All four sides	s are		
	• Opposite ang	les are		
	• All four angle	es are		
	• Consecutive	angles are		
	Diagonals			
	Diagonals			
	• Diagonais			

6.6 Proving that a Quadrilateral is a Rhombus or a Square

Instruction	Example 1: Determine whether the given vertices form a parallelogram , rectang Choose all that apply. Justify your reasoning by showing all calculati A(-3, 0), B(-1, 3), C(2, 1), D(0, -2)			s, or	sq	'e.	
	ABCD is a (circle all that apply) Parallelogram Rectangle Rhombus Square						

Example 2:

Instruction

Determine whether the given vertices form a **parallelogram**, **rectangle**, **rhombus**, or **square**. Choose all that apply. Justify your reasoning by showing all your calculations. Q(-6, -1), R(4, -6), S(2, 5), T(-8, 10)

<u>6.7 T</u>	rapezoids		
Targets	 I can recogni I can solve pr 	ze and apply the properties of trapezoids. roblems involving the medians of trapezoids.	
In	Term/Concept	Definition/Example	Picture
istructio	Definition of a Trapezoid	• A <u>trapezoid</u> is a quadrilateral with at least one pair of parallel sides.	
n	Definition of an Isosceles Trapezoid	• An isosceles trapezoid is a trapezoid with congruent legs .	
	Median of a Trapezoid	• The <u>median</u> of a trapezoid is the segment that joins the midpoints of the legs of the trapezoid.	
	Theorem	 The <u>median</u> of a trapezoid is parallel to the bases and its measure is the of the measures of the 	M L K
		Properties of trapezoids:	
	 Opposite side Consecutive	es (bases) are angles between the bases are	
		Properties of isosceles trapezoid	ls:
	• All of the pro	operties above, plus	
	Base angles a	are	
	Opposite ang		
	 Opposite side Diagonals 	-> (10gs) all	/
	All parallelograms a	re trapezoids. Are trapezoids parallelograms	? Yes/No
Ins	Example 1: \overline{MN} is the median of	of trapezoid <i>HJKL</i> . Find b ach indicated value.	
tructi	a. Find MN if $HJ = 3$	R^2 and $LK = 60$	H

<i>Jour Lurn:</i> In trapezoid <i>PORS</i> T and U are midpoints of the	p 50 a
legs Let \overline{VV} be the median of <i>UTRS</i>	P
a. Draw and label \overline{VV} on the figure.	U T
č	
b. Find VW .	s []
	72
c. Suppose $m \angle Q = 97^{\circ}$. Find $m \angle UTQ$.	
Example 5:	
Verify that <i>A</i> (2, 4), <i>B</i> (4, 0), <i>C</i> (-2, -3), and <i>D</i> (-2, 2), are	e vertices of a trapezoid. Justify your answe
<i>ABCD</i> is a trapezoid.	
<i>ABCD</i> is a trapezoid. Justification:	
<i>ABCD</i> is a trapezoid. Justification:	

Targets	 I can recognize and apply the properties of kites. I can use the quadrilateral hierarchy 		
Ι	Term/Concept	Definition/Example	Picture

Geometry A Unit 6

I	Example 2		
ns	Given ABCD is a kite with ends B and D, solve for x and find all missing side lengths.		
tr	,		
)n			
cti			
[0]			
n			
	\backslash		
	V		
	Engunlo 2.		
	Verify that $A(-3, 1)$, $B(-2, 4)$, $C(1, 3)$, and $D(1, -2)$, are vertices of a kite. Justify your answer.		
	ABCD is a kite.		
	Justification:		

<u>6.9 C</u>	onstructions	of	Quadrilaterals

0 0 0 0	I can construct a parallelogram. I can construct a rectangle I can construct a rhombus I can construct a square
	0 0 0

Example 1: Construct a parallelogram (diagonals _____)

Example 2: Construct a rectangle (diagonals ______ and _____)

Example 3:	Construct a rhombus ((diagonals	and))
1			 /	

Example 1: CONSTRUCTING A PARALLELOGRAM

After doing this	Your work should look like this
Start by drawing two intersecting segments. These will become the diagonals of your parallelogram.	
Put the point of your compass where your segments intersect. Set the compass to a width of your choice. Mark that distance from the intersection on each side of one segment.	
Set your compas to a new width. Mark that new distance from the intersection on each side of the other segment.	
Mark the points that will be the vertices of your parallelogram.	
Connect the vertices with your straightedge.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Example 2: CONSTRUCTING A RECTANGLE

After doing this	Your work should look like this
Start by drawing two intersecting segments. These will become the diagonals of your rectangle.	
Put the point of your compass where your segments intersect. Set the compass to a width of your choice. Mark that distance from the intersection on each side of one segment.	
Keep your compass set to the same width. Mark the distance from the intersection on each side of the other segment.	
Mark the points that will be the vertices of your rectangle.	
Connect the vertices with your straightedge.	

Example 3: CONSTRUCTING A RHOMBUS

After doing this	Your work should look like this
Start by drawing one segment. This will be one diagonal of your rhombus.	
Use your compass to construct a perpendicular bisector of your segment.	
Use your straightedge to draw in the perpendicular bisector. This is the second diagonal of your rhombus.	
Set your compass to a new width of your choice. Mark that distance from the intersection on each side of the new segment.	
Mark the points that will be the vertices of your rhombus.	
	27

Example 4: CONSTRUCTING A SQUARE

After doing this	Your work should look like this
Start by drawing one segment. This will be one diagonal of your square.	
Use your compass to construct a perpendicular bisector of your segment.	
Use your straightedge to draw in the perpendicular bisector. This is the second diagonal of your square.	
Use your compass to measure the distance from the intersection to the end of your first diagonal.	

