

Example 2:
Draw the image of $\triangle A B C$ under a dilation with center X and a scale factor of 3. Then determine
whether the transformation is an enlargement, a reduction, or a congruence transformation.

Geometry B Unit 7

7.2 Ratios and Proportions

- I can write ratios.

- I can use properties of proportions.

	Ratio	- a \qquad of 2 amounts	ratio of a to b notation:

Example 1:	Your turn:	
In a schedule of 5 classes, Jordan has 2 elective		
classes. What is the ratio of elective to non-		
elective classes in Jordan's schedule?		
State the ratio of the number of females in this		
class to the number of males.		
ancer		

准	Extended Ratio	- can be used to compare 3 or more amounts	ratio of a to b to c notation:

Example 2:	
The ratio of the measures of the sides of a triangle is 5:7:8. The perimeter of the triangle is 240 ft.	
Find the measures of all the sides of the triangle.	
	Example 3: The ratio of the measures of the angles of a triangle is 2:10:3. Find the measures of all the angles of the triangle.

| Your turn:
 The perimeter of a rectangle is 140 in. The ratio of the length to the width is 7:3. Find the length
 of the rectangle. |
| :--- | :--- |

	Proportion	- an equation stating that 2 \qquad are \qquad	Example: $\frac{4}{10}=\frac{2}{5}$
	Cross Products	- the product of the \qquad in a proportion are equal	$\frac{4}{10}=\frac{2}{5}$

Solving Proportions:

$\begin{aligned} & \text { 句 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Example 4: Solve each of the following proportions. a. $\frac{3}{8}=\frac{y}{24}$ c. $\frac{2 x+3}{8}=\frac{5}{4}$	b. $\frac{6}{18.2}=\frac{9}{x}$ d. $\frac{x+1}{x-1}=\frac{3}{4}$

	Example 5: A boxcar on a train has a length of 40 feet and a width of 9 feet. A scale model is made with a length of 16 inches. Find the width of the model.
	Example 6: The scale on a map indicates that 1 inch $=4$ miles. If 2 towns are 3.5 inches apart on the map, what is the actual distance between the towns?
$\begin{aligned} & \text { 븡 } \\ & \text { 를 } \\ & \text { ㄹ.. } \\ & \text { 를 } \end{aligned}$	Your turn: The Lehman's minivan requires 5 gallons of gasoline to travel 120 miles. How much gasoline will they need for a 350 -mile trip?
	Your turn: A 3.5 in. x 5 in. photo set horizontally is enlarged to make a photo 18 inches tall. Find the width of the enlarged photo.

7.3 Similar Polygons

莿	- I can identify similar figures. - I can find missing side lengths in similar figures.

	$\begin{gathered} \frac{\text { Congruent }}{\text { Polygons }} \\ \simeq \\ \simeq \end{gathered}$	polygons that have the same \qquad and the same \qquad .	\square
	Similar Polygons	- polygons that have the same \qquad but may have different \qquad —.	
	Similar Polygons Two polygons are similar if: 1. All their corresponding angles are \qquad AND 2. The measures of their corresponding sides are \qquad (all the ratios of the corresponding sides are equal).		
	Notation: \cong means "is \qquad to" (same shape and same size) means "is \qquad to" (same shape, may have different sizes)		
	Example 1: Determine whether polygon $W X Y Z \sim$ polygon $P Q R S$. Justify your answer.		

	Your turn: Determine whether $\triangle A B C \sim \triangle X Y Z$. Justify your answer.	

- Finding missing side lengths in similar figures:

Example 2:
The following pair of polygons is similar. Find the value of x.
The following pair of polygons is similar. Find the values of x and y.
Example 3:
The following pair of polygons is similar. Find the values of x and y

| Example 4: |
| :--- | :--- |
| $\Delta J K L \sim \triangle M N L$. Find the values of x and y. |
| Find the value of $x . \Delta J K L \sim \Delta M N L$ |

7.4 Proving Triangles Similar

	- I can identify similar triangles. - I can use similar triangles to solve problems.
	Congruent triangles: *all 3 pairs of corresponding angles are congruent *all 3 pairs of corresponding sides are congruent
	REVIEW: Triangle Congruence Theorems (ways of proving 2 triangles are congruent) 1. 2. 3.
	4. 5.

	Similar Triangles: - all 3 pairs of corresponding angles are congruent - all 3 pairs of corresponding sides are proportional
	Angle-Angle (AA~) Similarity If $\angle A \cong \angle D$ and $\angle B \cong \angle F$, then $\triangle A B C \sim \triangle D E F$$\quad$ If $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$, then $\triangle A B C \sim \triangle D E F$
	Side-Angle-Side (SAS~) Similarity If $\frac{A B}{D E}=\frac{B C}{E F}$ and $\angle B \cong \angle E$, then $\triangle A B C \sim \triangle D E F$
	Example 1: Determine whether each pair of triangles is similar. Justify your answer. a. c. b. d.

7．5 Proportional Parts of Triangles

苞	－I can use the Triangle Proportionality Theorem to find parts of triangles． －I can use the Triangle Midsegment Theorem to find parts of triangles． －I can recognize and use proportions to find relationships between altitudes，angle bisectors and medians of similar triangles．	
븡 ¢ dig	Triangle Proportionality Theorem： －If a line is \qquad to one side of a triangle and intersects the other 2 sides，then it separates those 2 sides into segments whose lengths are \qquad －	

$\begin{aligned} & \text { 炰 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Example 1： If $J K=7, K H=21$ ，and $J L=6$ ，find $L I$ ．	Your turn： Find $N Q$ ．
$\begin{aligned} & \text { 曹 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Example 2： Find the value of x ．	Your turn： Find the value of x ．

	Midsegment segment whose \qquad are the \qquad of \qquad of a triangle.	
$\begin{aligned} & \text { 블 } \\ & \text {. } \\ & \text { in : } \end{aligned}$	Triangle Midsegment Theorem: A midsegment of a triangle is \qquad to one side of the triangle, and its length is \qquad the length of that side	
		is the midpoint of $\overline{R T}$ and Y is the $\overline{S T}$. If $X Y=12$, find $R S$. Draw figure.
	Altitude: a perpendicular segment from a vertex to the line containing the opposite side	
	Theorem: If two triangles are similar, then the measures of the corresponding altitudes are \qquad to the measures of the corresponding sides.	

Geometry B Unit 7

	Example 4: Find $F G$ if $\triangle R S T \sim \triangle E F G, \overline{S H}$ is an altitude of $\triangle R S T, \overline{F J}$ is an altitude of $\triangle E F G, S T=6$, $S H=5$, and $F J=7$.	Your turn: $\triangle A B C \sim \triangle M N P, \overline{A D}$ and $\overline{M Q}$ are altitudes, $A B=24, A D=14$, and $M Q=10.5$. Find $M N$.

	Angle bisectors theorem: An angle bisector in a triangle separates the opposite side into segments that have the same ratio as the other two sides.	
	Example 5: Find the value of x.	Your turn: Find the value of x.

7.6 Similarity in Right Triangles

| Example 1: |
| :--- | :--- |
| Find the value of x. Round your answer to 2 decimal places. |

