8.1: The Pythagorean Theorem and its Converse

	- I can use the Pythagorean Theorem to find side lengths in right triangles. - I can use the Pythagorean Theorem to determine whether a triangle is a right triangle.

Term/ Concept	Definition/Example	Picture	
	Pythagorean	In a right triangle, the sum of the squares of the measures of the legs equals the square of the measure of the hypotenuse. The hypotenuse is always the side of the right triangle that is opposite the right angle. It is also the longest side.	

	Term/ Concept	Definition/Example	Picture
	Converse of the Pythagorean Theorem	If the sum of the squares of the measures of 2 sides of a triangle equals the square of the measure of the longest side, then the triangle is a right triangle.	If $a^{2}+b^{2}=c^{2}$, then $\triangle A B C$ is a right triangle.
	Pythagorean Triple	A Pythagorean triple is 3 \qquad that satisfy the equation \qquad where c is the greatest number.	

	Example 2: Determine whether each set of side measures form a right triangle. Then state whether the sides form a Pythagorean triple. Justify your answer mathematically. a. $8,10,6$ b. $11,7,9$ c. $\sqrt{24}, 5,7$ d. $2 \sqrt{7}, 6,2 \sqrt{2}$
	Example 3: Determine whether $\triangle R S T$ is a right triangle for the given vertices. Justify your answer mathematically. $R(0,3) S(-2,5) \quad T(4,7)$ Distance between 2 points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

8.2: 45-45-90 Triangles

菏	- I can find side lengths of special right triangles using 45-45-90. - I can find side lengths of special right triangles using 30-60-90. - I can find perimeter of figures using properties of special right triangles.

틀를ล.…	Term/Concept	Definition/Example	Picture
	$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle .	 In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, both hypotenuse is the length of a leg	congruent, and the length of the $\sqrt{2}$.
	Example 1 Find the missing side lengths. a. b. c.		
	d.		f.

	Example 2: Find the diagonal of a square that has a perimeter of $20 \mathrm{in}$.	Example 3: Find the perimeter of a square with a diagonal of 12 cm.

8.3: 30-60-90 Triangles

	Term/Concept	Definition/Example	Picture
		In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the leng length of the shorter leg, and the the shorter leg times $\sqrt{3}$.	se is $\mathbf{2}$ times the r leg is the length of
	Example 2 Find the missing side lengths. Give your answer in simplest radical form. a. c.		

8.4: Right Triangle Trigonometry

$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { en } \\ & 0 \end{aligned}$	- I can find trigonometric ratios using right triangles (SOH CAH TOA). - I can solve problems using trigonometric ratios (SOH CAH TOA).		
$\begin{aligned} & \text { 틀 } \\ & \stackrel{1}{6} \\ & \stackrel{3}{6} \\ & \frac{3}{6} \end{aligned}$	Term/Concept	Definition/Example	Picture
	Ratio	- A ratio is a comparison of two amounts. - Example: There are 12 boys and 11 girls in this class. What is the ratio of boys to girls?	
	Trigonometry	- Trigonometry is a branch of mathematics that deals with the relationships between the sides and angles of triangles.	
	Trigonometric Ratio	- A trigonometric ratio is a ratio of the lengths of the sides of a right triangle.The 3 most common trigonometric ratios are sine, cosine, and tangent.	
	sine: cosine: tangent:		
SOH			
	$\mathrm{n} \angle=\frac{\text { opposite }}{\text { hypotenuse }}$	$\cos \angle=\frac{\text { adjacent }}{\text { hypotenuse }}$	$\tan \angle=\frac{\text { opposite }}{\text { adjacent }}$

Geometry B Unit 8 Notes

	Example 1 Find the following trig ratios. Write your answer as a reduced fraction.	Example 2 Find the following trig ratios. Write your answer as a reduced fraction.
苞	Find the following trig ratios. Write your an $\begin{aligned} & \sin J \\ & \cos J \\ & \tan J \end{aligned}$	as a reduced fraction.
	Example 3 Use a calculator to find the following values (2 decimal places). a. $\sin 47^{\circ}$ b. $\cos 32^{\circ}$	e nearest hundredth c. $\tan 84^{\circ}$

Example 4
Find the value of x. Round to the nearest hundredth.
and

8.5: Solving for a Missing Angle using Trigonometry

Example 1:
Use a calculator to find the measure of each angle to the nearest degree.
a. $\sin K=0.5150$
b. $\tan M=7.1154$
c. $\cos R=0.2756$

Example 2:
Find the missing angle measure in each triangle to the nearest degree.
a.

b.

c.

Example 3:

Given each picture below, determine if you would use sine, cosine, or tangent to find the missing angle measure. Set up an equation that would solve for the missing angle.

8.6: Angles of Elevation and Depression

	- I can solve problems involving angles of elevation using SOH CAH TOA. - I can solve problems involving angles of depression using SOH CAH TOA.

	Term/Concept	Definition/Example	Picture
$$	Angle of Elevation Angle of Depression	the angle formed by a horizontal line and a line of sight \qquad it the angle formed by a horizontal line and a line of sight \qquad it	

| Example l: |
| :--- | :--- |
| A ladder leaning against a building makes an angle of 78° with the ground. The foot of the ladder |
| is 5 feet from the building. How long is the ladder? |
| Example 2:
 Find the angle of elevation to the sun when a 12.5 meter tall telephone pole casts an 18 -meter long
 shadow. |

| Example 3: |
| :--- | :--- |
| A salvage ship uses sonar to determine that the angle of depression to a wreck on the ocean floor is |
| 13.25°. The depth chart shows that the ocean floor is 40 meters below the surface. How far must a |
| diver lowered from the salvage ship walk along the ocean floor to reach the wreck? |
| Example 4:
 A ski run is 1000 yards long with a vertical drop of 208 yards. Find the angle of depression from
 the top of the ski run to the bottom. |
| Example 5:
 A person whose eyes are 5 feet above the ground is standing on an airport runway 100 feet from
 the control tower. That person observes an air traffic controller at the window of the 132 -foot
 tower. What is the angle of elevation for the person on the ground looking up at the air traffic
 controller? |
| Example 6 :
 The town of Belmont restricts the height of flagpoles to 25 feet on any property. Lindsay wants to
 determine whether her school is in compliance with the regulation. Her eye level is 5.5 feet from
 the ground, and she is standing 36 feet from the flagpole. If the angle of elevation is about 25°
 from Lindsay's eyes to the top of the flagpole, what is the height of the flagpole to the nearest
 tenth? |

