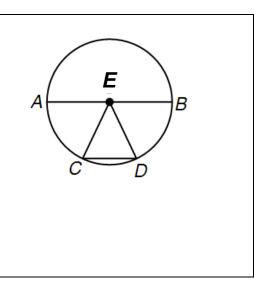
9.1 Circles and Circumference Targets

- I can identify and use parts of circles.
 I can solve problems involving the circumference of a circle.


In	Term/ Concept	Definition/Example	Picture
Instruction (Vocabulary)	Circle	 A <u>circle</u> is the set of all points in a plane that are from a given point called the 	•
cabulary)	Radius	 A <u>radius</u> of a circle is any segment whose endpoints are the and a on the circle. The lengths of all radii in a circle are , so all radii are 	•
	Chord	 A <u>chord</u> of a circle is any segment whose endpoints are 	•
	Diameter	 A <u>diameter</u> of a circle is a that passes through the of the circle. The diameter of a circle is as long as any radius. Any radius of a circle is as long as any diameter. 	•

Example 1: Refer to the circle shown at the right.

a. Name the circle.

Instruction

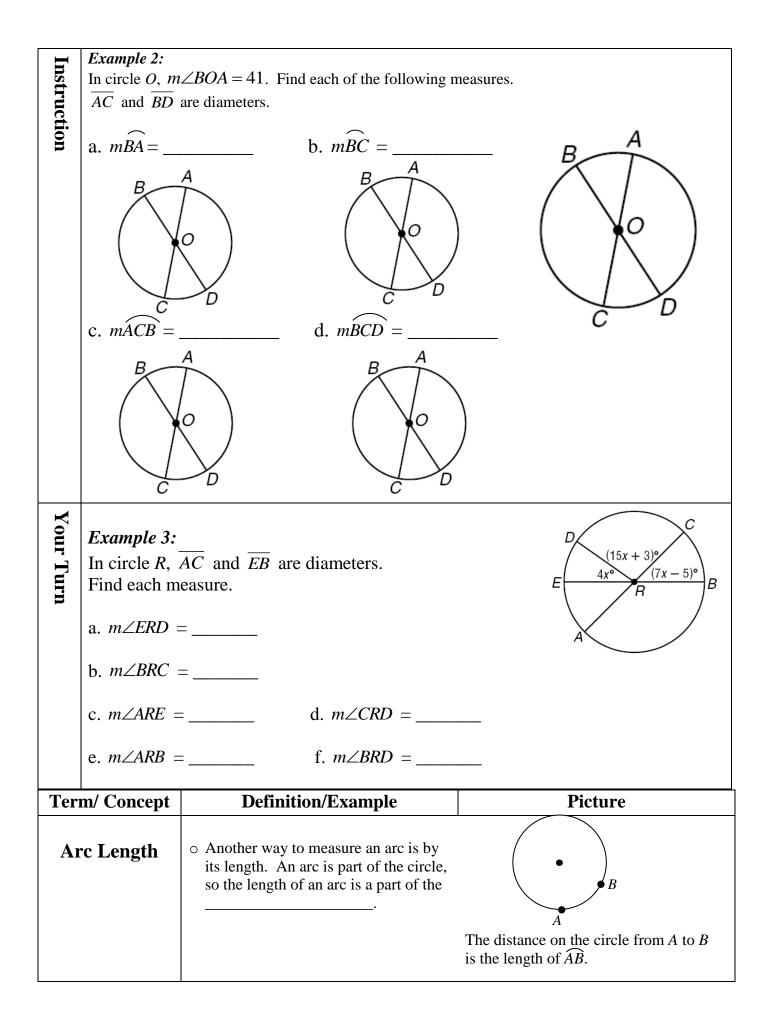
- b. Name all the radii of the circle.
- c. Name all the chords of the circle.
- d. Name all the diameters of the circle.
- e. If *AB* is 8 millimeters, find *ED*.
- f. f. If *EC* is 6 centimeters, find *AB*.

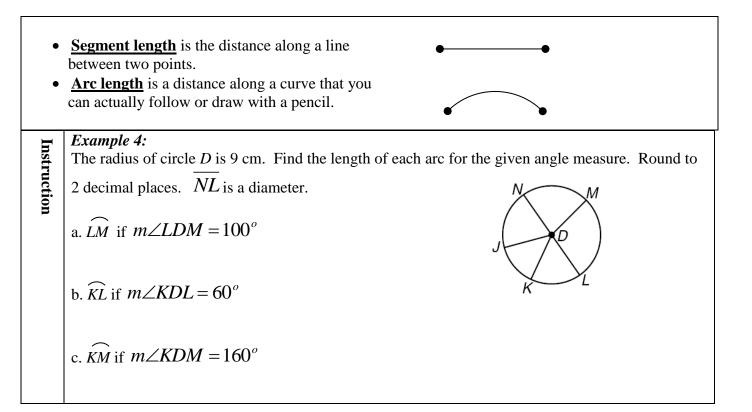
In	Term/ Concept	Definition/Example	Picture
Instruction (Vocabulary)	Congruent Circles	Two circles are congruent if and only if they have	
	Concentric Circles	Concentric circles are coplanar circles with the same	
	Similar Circles	All circles are	

In	Term/ Concept	Definition/Example	Picture
struction	Circumference	The <u>circumference</u> of a circle is the the circle.	•

Example 2:	Example 3:
Find the circumference of the circle shown	Find the exact circumference of the circle
below. Write the exact answer and the answer	below.
rounded to the nearest hundredth.	12 cm

Example 4: A circle has a circumference of 85 meters.

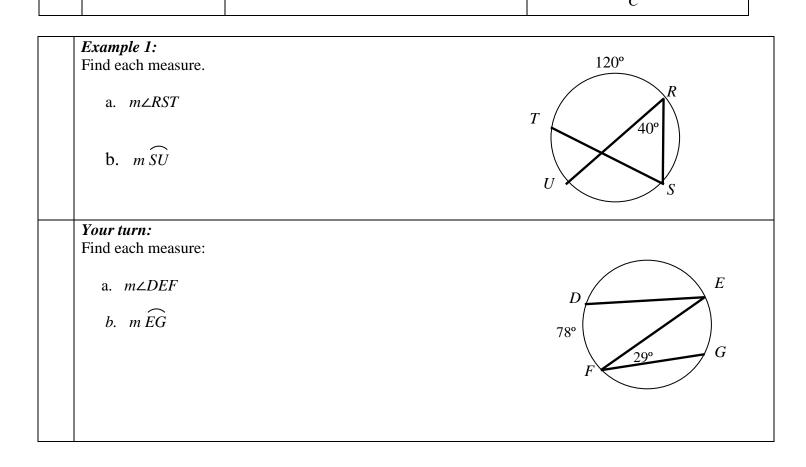

- a. Find the diameter of the circle
- b. Find the radius of the circle.


9.2 Angles and Arcs

Targets	 I can recognize major arcs, minor arcs, semicircles, and central angles and their measures. I can find arc length. 		
In	Term/ Concept	Definition/Example	Picture
Instruction (Vocabulary)	Central Angle	 A <u>central angle</u> of a circle is an angle whose is at the of the circle and whose are The sum of the measures of the central angles of a circle with no interior points in common is m∠1 + m∠2 + m∠3 + m∠4 = 	\bullet

Instruction	\overline{RU} is a d a. $m \angle RC$ b. $m \angle SC$	e figure at iameter. $Q = _$ $T = _$		angle measure. $m \angle SCU = _$ $m \angle QCU = _$	
In	Term/ C	oncept	Definitio	n/Example	Picture
struction	An Arc and Arc Measure • A central angle septored • A central angle • A central angle septored • A central angle • A central • A central		ach arc is related to the		
			ARCS	of a CIRCLE	
Тур	e of Arcs		Example	Named By:	Arc Degree Measure Equals:
Minor Arc				• the letters of the two endpoints	• the measure of the central angle and is less than 180°
Major Arc				 the letters of the two endpoints and another point on the arc 	 360 minus the measure of the minor arc and is greater than 180°
Sei	micircle			 the letters of the two endpoints and another point on the arc 	

• In the same or in congruent circles, <u>two arcs are congruent</u> if and only if their <u>corresponding central angles are congruent</u>.


9.3 Arcs and Chords

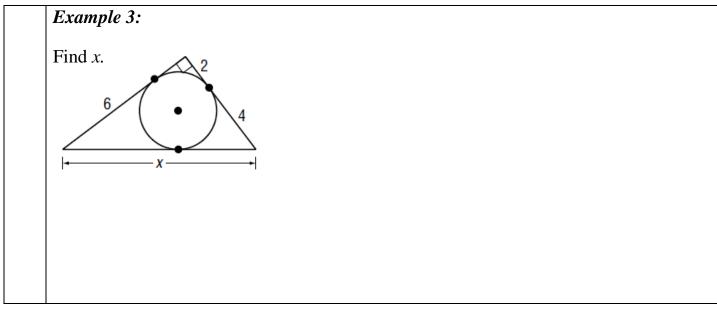
	• I can i	d chords.		
Targets	• I can recognize and use relationships between chords and diameters.			
In	Term/ Concept		Picture	
Instruction (Vocabulary)	Theorem 10.3: Perpendicular diameters and chords	In a circle, if a diameter (or radius) is perpendicular to a chord then it the and its 	A D B	
oulary)	Theorem 10.4: Congruent chords	In a circle, two chords are congruent if and only if they are from the	V X M	
Instruction	Example 1: The radius of circle I Find each measure: a. $\widehat{mBC} =$	<i>Y</i> is 34, $AB = 60$, and $m \stackrel{\frown}{AC} = 71$.	Y • B	
on		c. $BD =$	A	
	d. <i>YD</i> =	e. <i>DC</i> =		

	Example 2:		
	In circle P, $CD = 24$, Find each measure:	$\overrightarrow{PQ} \cong \overrightarrow{PR}$, and the $m \ \overrightarrow{CY}$ is 45.	BC
	a. <i>AQ</i> =	b. <i>RC</i> =	X R R
	c. <i>QB</i> =	d. <i>AB</i> =	AK P JD
	e. $m \widehat{DY} =$	f. $m \widehat{AX} =$	
	g. $m \widehat{CD} =$	h. $m \widehat{XB} =$	
Ir	Term/ Concept		Picture
Instruction	Inscribed Polygon	A polygon is inscribed if all the lie on the circle	
	Circumscribed	A circle is circumscribed about a polygon if it contains all the of the polygon.	
	Example 3: Determine the measu a.	re of each arc on the circle circumscribed about b .	but each polygon: 3x 3x 3x 3x 3x

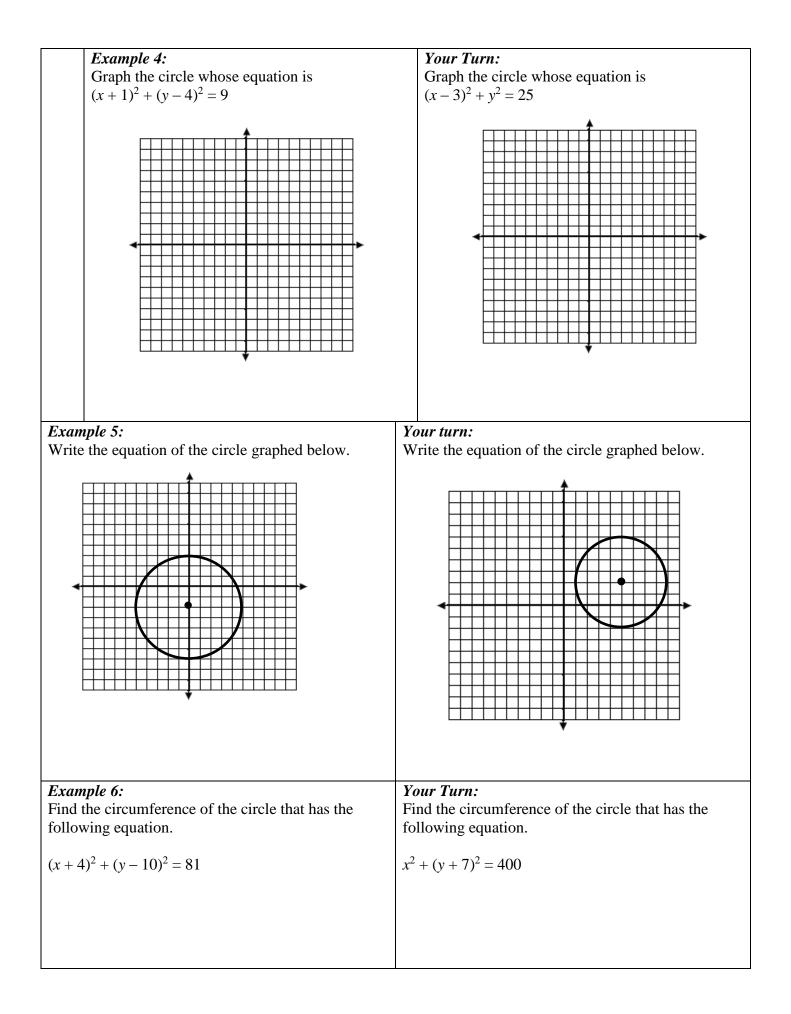
։ւ

<u>9.4 Ir</u>	nscribed Angles		
Targets	 I can find the measures of inscribed angles I can find measures of angles of inscribed triangles and quadrilaterals 		
In	Term/ Concept		Picture
Instruction	Inscribed Angle	An angle that has its on the circle and its sides contained in of the circle.	
	Inscribed Angle Theorem	If an angle is inscribed in a circle, then the measure of the angle equals the measure of its intercepted arc (or the measure of the intercepted arc is the measure of the intercepted angle)	

Inst	Term/ Concept	Definition/Example	Picture
struction	Angles inscribed in a semicircle	If an inscribed angle intercepts a semicircle, then the angle is a	


	Example 2:		
	If $m \angle l = 3x - 9$ and	$m \ge 2 = 2x + 4$, find	P
	a. $m \angle 1$ c. $m \widehat{AB}$	b. $m \angle 2$ d. $m \widehat{BC}$	$A = \begin{bmatrix} B \\ 1 \\ J \end{bmatrix} = \begin{bmatrix} 2 \\ J \end{bmatrix} C$
	Example 3:		
	Find CD.		D 24 C C C C C C C C C C C C C C C C C C
V	Term/ Concept	Definition/Example	Picture
Vocabulary	Inscribed Quadrilateral Theorem	If a quadrilateral is inscribed in a circle, then its opposite angles are	$A \xrightarrow{B} \\ P \bullet \\ D \xrightarrow{C} C$

Example 4: Quardirilateral ABCD is inscribed in circle P. If $m \angle B = 60$ and $m \angle C = 70$ find $m \angle A$ and $m \angle D$.	$A \xrightarrow{B} \\ P \bullet \\ D \xrightarrow{C} C$
Example 4: Find the angle measures in the quadrilateral if $m \angle P = 5x + 20, m \angle Q = 10x$ and $m \angle R = 7x - 8$	P Q R R S


9.5 Tangents

Targets	 I can use properties of tangents I can solve problems involving circumscribed polygons. 				
Ir	Term/ Concept	Definition/Example	Picture		
Instruction (Vocabulary)	Tangent	A that intersects a circle at exactly	•		
	Point of Tangency	The at which a tangent line the circle.	•		
y)	Radius-Tangent Theorem	If a line is drawn to a circle, then it is to the drawn to the point of tangency.	•		
	Congruent Tangents Theorem	If two segments from the same point are to a circle, then they are 	•		
	Example 1:				
	\overline{ED} is tangent to circle <i>F</i> at point <i>E</i> . If $DG = 8$, Find the length of \overline{ED} .				

	Example 2: \overline{ED} and \overline{FD} are tangent to circle <i>G</i> . Find <i>x</i> .		E $G \bullet$ F $x + 18$
Vocabulary	Term/ Concept Circumscribed Polygons	Definition/Example A polygon is circumscribed about a circle if the of the polygon are all to the circle.	Picture

	0 (Equations of Cir	alaa		
Targets	 9.6 Equations of Circles I can write the equation of a circle. I can graph a circle on the coordinate plane. 			
In	Term/ Concept	Definition/Example		Picture
Instruction Concept Standard Equation of a Circle		• An equation for a circle at the point a a a	with a of	
		a circle whose center is at as of 5. Then graph the	-	a circle whose center is at the of 8. Then graph the
	<i>Your Turn:</i> Write the equation of (0, 2) and has a radius circle.	a circle whose center is at s of 6. Then graph the	<i>Example 3:</i> For each of the following <u>center</u> and <u>radius</u> of the $(x - h)^2 + (y)$ a. $(x - 5)^2 + (y - 5)^2$ center: radii b. $(x + 7)^2 + (y - 5)^2$ center: radii c. $x^2 + (y - 4)^2 = 4$ center: radii	$(-k)^{2} = r^{2}$ $(9)^{2} = 81$ us: $1)^{2} = 100$ us: 49

Example 7:	Your turn:		
Write an equation of the circle whose diameter has	Write an equation of the circle whose diameter has		
1	-		
an endpoint at (-1, 1) and a center at (3, 1). You may	endpoints at $(-5, 1)$ and $(1, 5)$. You may use the		
use the graph below to help you visualize the	graph below to help you visualize the problem.		
problem.			
problem.	*		
····			
< 			
$\left \begin{array}{c} + + + + + + + + + + + + + + + + + + +$	*		
<u>·····</u>			