	- I can identify and use parts of circles. - I can solve problems involving the circumference of a circle.		
	Term/ Concept	Definition/Example	Picture
	Circle	A circle is the set of all points in a plane that are \qquad from a given point called the \qquad	
	Radius	A radius of a circle is any segment whose endpoints are the \qquad and a \qquad on the circle. - The lengths of all radii in a circle are \qquad , so all radii are \qquad	
	Chord	A chord of a circle is any segment whose endpoints are \qquad	
	Diameter	- A diameter of a circle is a \qquad that passes through the \qquad of the circle. - The diameter of a circle is \qquad as long as any radius. - Any radius of a circle is \qquad as long as any diameter.	

	Example 1: Refer to the circle shown at the right.
a. Name the circle.	
e. If $A B$ is 8 millimeters, find $E D$.	
f. \quad f. If $E C$ is 6 centimeters, find $A B$.	

| Term/ Concept | Definition/Example | Picture |
| :---: | :---: | :--- | :--- |

G	Term/ Concept	Definition/Example	Picture
$\begin{aligned} & \text { e. } \\ & \text { a. } \\ & \text { e. } \end{aligned}$	Circumference	The circumference of a circle is the \qquad the circle. \square \square	

| Example 2: |
| :--- | :--- |
| Find the circumference of the circle shown |
| below. Write the exact answer and the answer |
| rounded to the nearest hundredth. | | Example 3: |
| :--- |
| Find the exact circumference of the circle |
| below. |

| Example 4: |
| :--- | :--- |
| A circle has a circumference of 85 meters. |
| a. Find the diameter of the circle |
| b. Find the radius of the circle. |

9.2 Angles and Arcs

	I can recognize major arcs, minor arcs, semicircles, and central angles and their measures. I can find arc length.		
붕	Term/ Concept	Definition/Example	Picture
(К.IE[nqеวo Λ) uo!	Central Angle	A central angle of a circle is an angle whose \qquad is at the \qquad of the circle and whose \qquad are \qquad . - The sum of the measures of the central angles of a circle with no interior points in common is \qquad	

⿹ㅡㄹ 를 ق. 읍	Example 1: Refer to the figure at the right to find each angle measure. $\overline{R U}$ is a diameter. a. $m \angle R C Q=$ \qquad b. $m \angle S C T=$ \qquad c. $m \angle S C U=$ d. $m \angle Q C T=$ \qquad e. $m \angle Q C U=$			
	Term/ Concept	Definition/Example		Picture
	$\begin{gathered} \text { An Arc } \\ \text { and } \\ \text { Arc Measure } \end{gathered}$	- A central angle separates a circle into two parts, each of which is an arc. - The measure of each arc is related to the measure of its central angle.		
ARCS of a CIRCLE				
Type of Arcs		Example	Named By:	Arc Degree Measure Equals:
Minor Arc			- the letters of the two endpoints	- the measure of the central angle and is less than 180°
Major Arc			○ the letters of the two endpoints and another point on the arc	- 360 minus the measure of the minor arc and is greater than 180°
Semicircle			- the letters of the two endpoints and another point on the arc	

- In the same or in congruent circles, two arcs are congruent if and only if their corresponding central angles are congruent.

- Segment length is the distance along a line between two points.
- Arc length is a distance along a curve that you can actually follow or draw with a pencil.

9.3 Arcs and Chords

	- I can recognize and use relationships between arcs and chords. - I can recognize and use relationships between chords and diameters.		
(K.Ie[nqeso $\boldsymbol{\Lambda}$) uo!̣on.ıSUI	Term/ Concept		Picture
	Theorem 10.3: Perpendicular diameters and chords	In a circle, if a diameter (or radius) is perpendicular to a chord then it \qquad the \qquad and its \qquad	
	Theorem 10.4: Congruent chords	In a circle, two chords are congruent if and only if they are \qquad from the \qquad —.	
	Example 1: The radius of circle Y is $34, A B=60$, and $m \overparen{\mathrm{AC}}=71$. Find each measure: a. $m \overparen{B C}=$ b. $A D=$ c. $B D=$ d. $Y D=$ e. $D C=$		

	Example 2: In circle $\mathrm{P}, C D=24, \overline{P Q} \cong \overline{P R}$, and the $m \overparen{C Y}$ is 45 . Find each measure: a. $A Q=$ b. $R C=$ c. $Q B=$ d. $A B=$ e. $m \overparen{D Y}=$ f. $m \overparen{A X}=$ g. $m \overparen{C D}=$ h. $m \overparen{X B}=$
	Term/ Concept \quad Picture
	Inscribed Polygon A polygon is inscribed if all the lie on the circle Circumscribed A circle is circumscribed about a polygon if it contains all the the polygon.
	Example 3: Determine the measure of each arc on the circle circumscribed about each polygon: a. b.

| Inscribed Angle | An angle that has its
 circle and its sides contained in |
| :--- | :--- | :--- |
| Inscribed Angle | |
| Theorem | |

Example 1:
Find each measure.
a. $m \angle R S T$
b. $m \overparen{S U}$

Your turn:
Find each measure:
a. $m \angle D E F$
b. $m \overparen{E G}$

哥	Term/ Concept	Definition/Example	Picture
	Angles inscribed in	If an inscribed angle intercepts a	
semicircle, then the angle is a			

	Example 2: If $m \angle 1=3 x-9$ and $m \angle 2=2 x+4$, find a. $m \angle 1$ b. $m \angle 2$ c. $m \overparen{A B}$ d. $m \overparen{B C}$		
	Example 3: Find CD.		
	Term/ Concept	Definition/Example	Picture
	$\begin{aligned} & \text { Inscribed } \\ & \text { Quadrilateral } \\ & \text { Theorem } \end{aligned}$	If a quadrilateral is inscribed in a circle, then its opposite angles are \qquad	

Example 4:
Quardirilateral $A B C D$ is inscribed in circle P.
If $m \angle B=60$ and $m \angle C=70$ find $m \angle A$ and $m \angle D$.

	Example 2: $\overline{E D}$ and $\overline{\mathrm{FD}}$ are tangent to circle G. Find x.		
2	Term/ Concept	Definition/Example	Picture
	Circumscribed Polygons	A polygon is circumscribed about a circle if the \qquad of the polygon are all \qquad to the circle.	

Find x.

Example 4: Graph the circle whose equation is $(x+1)^{2}+(y-4)^{2}=9$	Your Turn: Graph the circle whose equation is $(x-3)^{2}+y^{2}=25$
Example 5: Write the equation of the circle graphed below.	Your turn: Write the equation of the circle graphed below.
Example 6: Find the circumference of the circle that has the following equation. $(x+4)^{2}+(y-10)^{2}=81$	Your Turn: Find the circumference of the circle that has the following equation. $x^{2}+(y+7)^{2}=400$

Example 7:
Write an equation of the circle whose diameter has an endpoint at $(-1,1)$ and a center at $(3,1)$. You may use the graph below to help you visualize the problem.

Your turn:
Write an equation of the circle whose diameter has endpoints at $(-5,1)$ and $(1,5)$. You may use the graph below to help you visualize the problem.

